更新数据结构代码

This commit is contained in:
huihut 2018-02-16 23:58:28 +08:00
parent 28dbc298bc
commit e8f140649e
7 changed files with 1047 additions and 3 deletions

View File

@ -0,0 +1,196 @@
#include<stdio.h>
#include<stdlib.h>
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define OVERFLOW -1
#define SUCCESS 1
#define UNSUCCESS 0
#define dataNum 5
int i = 0;
int dep = 0;
char data[dataNum] = { 'A', 'B', 'C', 'D', 'E' };
typedef int Status;
typedef char TElemType;
typedef struct BiTNode
{
TElemType data;
struct BiTNode *lchild, *rchild;
}BiTNode, *BiTree;
void InitBiTree(BiTree &T); //创建一颗空二叉树
BiTree MakeBiTree(TElemType e, BiTree L, BiTree R); //创建一颗二叉树T其中根节点的值为eL和R分别作为左子树和右子树
void DestroyBiTree(BiTree &T); //销毁二叉树
Status BiTreeEmpty(BiTree T); //对二叉树判空。若为空返回TRUE否则FALSE
Status BreakBiTree(BiTree &T, BiTree &L, BiTree &R); //将一颗二叉树T分解成根、左子树、右子树三部分
Status ReplaceLeft(BiTree &T, BiTree &LT); //替换左子树。若T非空则用LT替换T的左子树并用LT返回T的原有左子树
Status ReplaceRight(BiTree &T, BiTree &RT); //替换右子树。若T非空则用RT替换T的右子树并用RT返回T的原有右子树
int Leaves(BiTree T);
int Depth(BiTree T);
Status visit(TElemType e);
void UnionBiTree(BiTree &Ttemp);
//InitBiTree空二叉树是只有一个BiTree指针还是有一个结点但结点域为空
void InitBiTree(BiTree &T)
{
T = NULL;
}
BiTree MakeBiTree(TElemType e, BiTree L, BiTree R)
{
BiTree t;
t = (BiTree)malloc(sizeof(BiTNode));
if (NULL == t) return NULL;
t->data = e;
t->lchild = L;
t->rchild = R;
return t;
}
Status visit(TElemType e)
{
printf("%c", e);
return OK;
}
int Leaves(BiTree T) //对二叉树T求叶子结点数目
{
int l = 0, r = 0;
if (NULL == T) return 0;
if (NULL == T->lchild && NULL == T->rchild) return 1;
//问题分解2个子问题
//求左子树叶子数目
l = Leaves(T->lchild);
//求右子树叶子数目
r = Leaves(T->rchild);
//组合
return r + l;
}
int depTraverse(BiTree T) //层次遍历dep是个全局变量,高度
{
if (NULL == T) return ERROR;
dep = (depTraverse(T->lchild) > depTraverse(T->rchild)) ? depTraverse(T->lchild) : depTraverse(T->rchild);
return dep + 1;
}
void levTraverse(BiTree T, Status(*visit)(TElemType e), int lev) //高度遍历lev是局部变量层次
{
if (NULL == T) return;
visit(T->data);
printf("的层次是%d\n", lev);
levTraverse(T->lchild, visit, ++lev);
levTraverse(T->rchild, visit, lev);
}
void InOrderTraverse(BiTree T, Status(*visit)(TElemType e), int &num) //num是个全局变量
{
if (NULL == T) return;
visit(T->data);
if (NULL == T->lchild && NULL == T->rchild) { printf("是叶子结点"); num++; }
else printf("不是叶子结点");
printf("\n");
InOrderTraverse(T->lchild, visit, num);
InOrderTraverse(T->rchild, visit, num);
}
Status BiTreeEmpty(BiTree T)
{
if (NULL == T) return TRUE;
return FALSE;
}
Status BreakBiTree(BiTree &T, BiTree &L, BiTree &R)
{
if (NULL == T) return ERROR;
L = T->lchild;
R = T->rchild;
T->lchild = NULL;
T->rchild = NULL;
return OK;
}
Status ReplaceLeft(BiTree &T, BiTree &LT)
{
BiTree temp;
if (NULL == T) return ERROR;
temp = T->lchild;
T->lchild = LT;
LT = temp;
return OK;
}
Status ReplaceRight(BiTree &T, BiTree &RT)
{
BiTree temp;
if (NULL == T) return ERROR;
temp = T->rchild;
T->rchild = RT;
RT = temp;
return OK;
}
void UnionBiTree(BiTree &Ttemp)
{
BiTree L = NULL, R = NULL;
L = MakeBiTree(data[i++], NULL, NULL);
R = MakeBiTree(data[i++], NULL, NULL);
ReplaceLeft(Ttemp, L);
ReplaceRight(Ttemp, R);
}
int main()
{
BiTree T = NULL, Ttemp = NULL;
InitBiTree(T);
if (TRUE == BiTreeEmpty(T)) printf("初始化T为空\n");
else printf("初始化T不为空\n");
T = MakeBiTree(data[i++], NULL, NULL);
Ttemp = T;
UnionBiTree(Ttemp);
Ttemp = T->lchild;
UnionBiTree(Ttemp);
Status(*visit1)(TElemType);
visit1 = visit;
int num = 0;
InOrderTraverse(T, visit1, num);
printf("叶子结点是 %d\n", num);
printf("叶子结点是 %d\n", Leaves(T));
int lev = 1;
levTraverse(T, visit1, lev);
printf("高度是 %d\n", depTraverse(T));
return 0;
}

161
DataStructure/HashTable.cpp Normal file
View File

@ -0,0 +1,161 @@
#include<stdio.h>
#include<stdlib.h>
#define SUCCESS 1
#define UNSUCCESS 0
#define OVERFLOW -1
#define OK 1
#define ERROR -1
typedef int Status;
typedef int KeyType;
typedef struct{
KeyType key;
}RcdType;
typedef struct{
RcdType *rcd;
int size;
int count;
int *tag;
}HashTable;
int hashsize[] = { 11, 31, 61, 127, 251, 503 };
int index = 0;
Status InitHashTable(HashTable &H, int size){
int i;
H.rcd = (RcdType *)malloc(sizeof(RcdType)*size);
H.tag = (int *)malloc(sizeof(int)*size);
if (NULL == H.rcd || NULL == H.tag) return OVERFLOW;
for (i = 0; i< size; i++) H.tag[i] = 0;
H.size = size;
H.count = 0;
return OK;
}
int Hash(KeyType key, int m){
return (3 * key) % m;
}
void collision(int &p, int m){ //线性探测
p = (p + 1) % m;
}
Status SearchHash(HashTable H, KeyType key, int &p, int &c) {
p = Hash(key, H.size);
int h = p;
c = 0;
while ((1 == H.tag[p] && H.rcd[p].key != key) || -1 == H.tag[p]){
collision(p, H.size); c++;
}
if (1 == H.tag[p] && key == H.rcd[p].key) return SUCCESS;
else return UNSUCCESS;
}
void printHash(HashTable H) //打印哈希表
{
int i;
printf("key : ");
for (i = 0; i < H.size; i++)
printf("%3d ", H.rcd[i].key);
printf("\n");
printf("tag : ");
for (i = 0; i < H.size; i++)
printf("%3d ", H.tag[i]);
printf("\n\n");
}
Status InsertHash(HashTable &H, KeyType key); //对函数的声明
//重构
Status recreateHash(HashTable &H){
RcdType *orcd;
int *otag, osize, i;
orcd = H.rcd;
otag = H.tag;
osize = H.size;
InitHashTable(H, hashsize[index++]);
//把所有元素,按照新哈希函数放到新表中
for (i = 0; i < osize; i++){
if (1 == otag[i]){
InsertHash(H, orcd[i].key);
}
}
}
Status InsertHash(HashTable &H, KeyType key){
int p, c;
if (UNSUCCESS == SearchHash(H, key, p, c)){ //没有相同key
if (c*1.0 / H.size < 0.5){ //冲突次数未达到上线
//插入代码
H.rcd[p].key = key;
H.tag[p] = 1;
H.count++;
return SUCCESS;
}
else recreateHash(H); //重构哈希表
}
return UNSUCCESS;
}
Status DeleteHash(HashTable &H, KeyType key){
int p, c;
if (SUCCESS == SearchHash(H, key, p, c)){
//删除代码
H.tag[p] = -1;
H.count--;
return SUCCESS;
}
else return UNSUCCESS;
}
void main()
{
printf("-----哈希表-----\n");
HashTable H;
int i;
int size = 11;
KeyType array[8] = { 22, 41, 53, 46, 30, 13, 12, 67 };
KeyType key;
RcdType e;
//初始化哈希表
printf("初始化哈希表\n");
if (SUCCESS == InitHashTable(H, hashsize[index++])) printf("初始化成功\n");
//插入哈希表
printf("插入哈希表\n");
for (i = 0; i <= 7; i++){
key = array[i];
InsertHash(H, key);
printHash(H);
}
//删除哈希表
printf("删除哈希表\n");
int p, c;
if (SUCCESS == DeleteHash(H, 12)) {
printf("删除成功,此时哈希表为:\n");
printHash(H);
}
//查询哈希表
printf("查询哈希表\n");
if (SUCCESS == SearchHash(H, 67, p, c)) printf("查询成功\n");
//再次插入,测试哈希表的重构
printf("再次插入,测试哈希表的重构:\n");
KeyType array1[8] = { 27, 47, 57, 47, 37, 17, 93, 67 };
for (i = 0; i <= 7; i++){
key = array1[i];
InsertHash(H, key);
printHash(H);
}
}

152
DataStructure/LinkList.cpp Normal file
View File

@ -0,0 +1,152 @@
/**
* @author huihut
* @E-mail:huihut@outlook.com
* @version 2016918
*
*/
#include "stdio.h"
#include "stdlib.h"
#include "malloc.h"
//5个常量定义
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define OVERFLOW -1
//类型定义
typedef int Status;
typedef int ElemType;
//测试程序长度定义
#define LONGTH 5
//链表的类型
typedef struct LNode {
ElemType data;
struct LNode *next;
} LNode, *LinkList;
Status InitList_L(LinkList &L);
Status DestroyList_L(LinkList &L);
Status ClearList_L(LinkList &L);
Status ListEmpty_L(LinkList L);
int ListLength_L(LinkList L);
LNode* Search_L(LinkList L, ElemType e);
LNode* NextElem_L(LNode *p);
Status InsertAfter_L(LNode *p, LNode *q);
Status DeleteAfter_L(LNode *p, ElemType &e);
void ListTraverse_L(LinkList L, Status(*visit)(ElemType e));
//创建包含n个元素的链表L元素值存储在data数组中
Status create(LinkList &L, ElemType *data, int n) {
LNode *p, *q;
int i;
if (n < 0) return ERROR;
L = NULL;
p = L;
for (i = 0; i < n; i++)
{
q = (LNode *)malloc(sizeof(LNode));
if (NULL == q) return OVERFLOW;
q->data = data[i];
q->next = NULL;
if (NULL == p) L = q;
else p->next = q;
p = q;
}
return OK;
}
//e从链表末尾入链表
Status EnQueue_LQ(LinkList &L, ElemType &e) {
LinkList p, q;
if (NULL == (q = (LNode *)malloc(sizeof(LNode)))) return OVERFLOW;
q->data = e;
q->next = NULL;
if (NULL == L) L = q;
else
{
p = L;
while (p->next != NULL)
{
p = p->next;
}
p->next = q;
}
return OK;
}
//从链表头节点出链表到e
Status DeQueue_LQ(LinkList &L, ElemType &e) {
if (NULL == L) return ERROR;
LinkList p;
p = L;
e = p->data;
L = L->next;
free(p);
return OK;
}
//遍历调用
Status visit(ElemType e) {
printf("%d\t", e);
}
//遍历单链表
void ListTraverse_L(LinkList L, Status(*visit)(ElemType e))
{
if (NULL == L) return;
for (LinkList p = L; NULL != p; p = p -> next) {
visit(p -> data);
}
}
int main() {
int i;
ElemType e, data[LONGTH] = { 1, 2, 3, 4, 5 };
LinkList L;
//显示测试值
printf("---【单链表】---\n");
printf("待测试元素为:\n");
for (i = 0; i < LONGTH; i++) printf("%d\t", data[i]);
printf("\n");
//创建链表L
printf("创建链表L\n");
if (ERROR == create(L, data, LONGTH))
{
printf("创建链表L失败\n");
return -1;
}
printf("成功创建包含%d个元素的链表L\n元素值存储在data数组中\n", LONGTH);
//遍历单链表
printf("此时链表中元素为:\n");
ListTraverse_L(L, visit);
//从链表头节点出链表到e
printf("\n出链表到e\n");
DeQueue_LQ(L, e);
printf("出链表的元素为:%d\n", e);
printf("此时链表中元素为:\n");
//遍历单链表
ListTraverse_L(L, visit);
//e从链表末尾入链表
printf("\ne入链表\n");
EnQueue_LQ(L, e);
printf("入链表的元素为:%d\n", e);
printf("此时链表中元素为:\n");
//遍历单链表
ListTraverse_L(L, visit);
printf("\n");
return 0;
}

View File

@ -0,0 +1,162 @@
/**
* @author huihut
* @E-mail:huihut@outlook.com
* @version 2016923
*
*/
#include "stdio.h"
#include "stdlib.h"
#include "malloc.h"
//5个常量定义
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define OVERFLOW -1
//类型定义
typedef int Status;
typedef int ElemType;
//测试程序长度定义
#define LONGTH 5
//链表的类型
typedef struct LNode {
ElemType data;
struct LNode *next;
} LNode, *LinkList;
Status InitList_L(LinkList &L);
Status DestroyList_L(LinkList &L);
Status ClearList_L(LinkList &L);
Status ListEmpty_L(LinkList L);
int ListLength_L(LinkList L);
LNode* Search_L(LinkList L, ElemType e);
LNode* NextElem_L(LNode *p);
Status InsertAfter_L(LNode *p, LNode *q);
Status DeleteAfter_L(LNode *p, ElemType &e);
void ListTraverse_L(LinkList L, Status(*visit)(ElemType e));
//创建包含n个元素的链表L元素值存储在data数组中
Status create(LinkList &L, ElemType *data, int n) {
LNode *p, *q;
int i;
if (n < 0) return ERROR;
p = L = NULL;
q = (LNode *)malloc(sizeof(LNode));
if (NULL == q) return OVERFLOW;
q->next = NULL;
p = L = q;
for (i = 0; i < n; i++)
{
q = (LNode *)malloc(sizeof(LNode));
if (NULL == q) return OVERFLOW;
q->data = data[i];
q->next = NULL;
p->next = q;
p = q;
}
return OK;
}
//e从链表末尾入链表
Status EnQueue_LQ(LinkList &L, ElemType &e) {
LinkList p, q;
if (NULL == (q = (LNode *)malloc(sizeof(LNode)))) return OVERFLOW;
q->data = e;
q->next = NULL;
if (NULL == L)
{
L = (LNode *)malloc(sizeof(LNode));
if (NULL == L) return OVERFLOW;
L -> next = q;
}
else if (NULL == L->next) L = q;
else
{
p = L;
while (p->next != NULL)
{
p = p->next;
}
p->next = q;
}
return OK;
}
//从链表头节点出链表到e
Status DeQueue_LQ(LinkList &L, ElemType &e) {
if (NULL == L || NULL == L->next) return ERROR;
LinkList p;
p = L->next;
e = p->data;
L->next = p->next;
free(p);
return OK;
}
//遍历调用
Status visit(ElemType e) {
printf("%d\t", e);
}
//遍历单链表
void ListTraverse_L(LinkList L, Status(*visit)(ElemType e))
{
if (NULL == L || NULL == L->next) return;
for (LinkList p = L -> next; NULL != p; p = p -> next) {
visit(p -> data);
}
}
int main() {
int i;
ElemType e, data[LONGTH] = { 1, 2, 3, 4, 5 };
LinkList L;
//显示测试值
printf("---【有头结点的单链表】---\n");
printf("待测试元素为:\n");
for (i = 0; i < LONGTH; i++) printf("%d\t", data[i]);
printf("\n");
//创建链表L
printf("创建链表L\n");
if (ERROR == create(L, data, LONGTH))
{
printf("创建链表L失败\n");
return -1;
}
printf("成功创建包含1个头结点、%d个元素的链表L\n元素值存储在data数组中\n", LONGTH);
//遍历单链表
printf("此时链表中元素为:\n");
ListTraverse_L(L, visit);
//从链表头节点出链表到e
printf("\n出链表到e\n");
DeQueue_LQ(L, e);
printf("出链表的元素为:%d\n", e);
printf("此时链表中元素为:\n");
//遍历单链表
ListTraverse_L(L, visit);
//e从链表末尾入链表
printf("\ne入链表\n");
EnQueue_LQ(L, e);
printf("入链表的元素为:%d\n", e);
printf("此时链表中元素为:\n");
//遍历单链表
ListTraverse_L(L, visit);
printf("\n");
return 0;
}

192
DataStructure/SqList.cpp Normal file
View File

@ -0,0 +1,192 @@
/**
* @author huihut
* @E-mail:huihut@outlook.com
* @version 201699
*
*/
#include "stdio.h"
#include "stdlib.h"
#include "malloc.h"
//5个常量定义
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define OVERFLOW -1
//测试程序长度定义
#define LONGTH 5
//类型定义
typedef int Status;
typedef int ElemType;
//顺序栈的类型
typedef struct {
ElemType *elem;
int length;
int size;
int increment;
} SqList;
Status InitList_Sq(SqList &L, int size, int inc); //初始化顺序表L
Status DestroyList_Sq(SqList &L); //销毁顺序表L
Status ClearList_Sq(SqList &L); //将顺序表L清空
Status ListEmpty_Sq(SqList L); //若顺序表L为空表则返回TRUE否则FALSE
int ListLength_Sq(SqList L); //返回顺序表L中元素个数
Status GetElem_Sq(SqList L, int i, ElemType &e); //用e返回顺序表L中第i个元素的值
int Search_Sq(SqList L, ElemType e); //在顺序表L顺序查找元素e成功时返回该元素在表中第一次出现的位置否则返回-1
Status ListTraverse_Sq(SqList L, Status(*visit)(ElemType e)); //遍历顺序表L依次对每个元素调用函数visit()
Status PutElem_Sq(SqList &L, int i, ElemType e); //将顺序表L中第i个元素赋值为e
Status Append_Sq(SqList &L, ElemType e); //在顺序表L表尾添加元素e
Status DeleteLast_Sq(SqList &L, ElemType &e); //删除顺序表L的表尾元素并用参数e返回其值
//初始化顺序表L
Status InitList_Sq(SqList &L, int size, int inc) {
L.elem = (ElemType *)malloc(size * sizeof(ElemType));
if (NULL == L.elem) return OVERFLOW;
L.length = 0;
L.size = size;
L.increment = inc;
return OK;
}
//销毁顺序表L
Status DestroyList_Sq(SqList &L) {
free(L.elem);
L.elem = NULL;
return OK;
}
//将顺序表L清空
Status ClearList_Sq(SqList &L) {
if (0 != L.length) L.length = 0;
return OK;
}
//若顺序表L为空表则返回TRUE否则FALSE
Status ListEmpty_Sq(SqList L) {
if (0 == L.length) return TRUE;
return FALSE;
}
//返回顺序表L中元素个数
int ListLength_Sq(SqList L) {
return L.length;
}
// 用e返回顺序表L中第i个元素的值
Status GetElem_Sq(SqList L, int i, ElemType &e) {
e = L.elem[--i];
return OK;
}
// 在顺序表L顺序查找元素e成功时返回该元素在表中第一次出现的位置否则返回 - 1
int Search_Sq(SqList L, ElemType e) {
int i = 0;
while (i < L.length && L.elem[i] != e) i++;
if (i < L.length) return i;
else return -1;
}
//遍历调用
Status visit(ElemType e) {
printf("%d\t",e);
}
//遍历顺序表L依次对每个元素调用函数visit()
Status ListTraverse_Sq(SqList L, Status(*visit)(ElemType e)) {
if (0 == L.length) return ERROR;
for (int i = 0; i < L.length; i++) {
visit(L.elem[i]);
}
return OK;
}
//将顺序表L中第i个元素赋值为e
Status PutElem_Sq(SqList &L, int i, ElemType e) {
if (i > L.length) return ERROR;
e = L.elem[--i];
return OK;
}
//在顺序表L表尾添加元素e
Status Append_Sq(SqList &L, ElemType e) {
if (L.length >= L.size) return ERROR;
L.elem[L.length] = e;
L.length++;
return OK;
}
//删除顺序表L的表尾元素并用参数e返回其值
Status DeleteLast_Sq(SqList &L, ElemType &e) {
if (0 == L.length) return ERROR;
e = L.elem[L.length - 1];
L.length--;
return OK;
}
int main() {
//定义表L
SqList L;
//定义测量值
int size, increment, i;
//初始化测试值
size = LONGTH;
increment = LONGTH;
ElemType e, eArray[LONGTH] = { 1, 2, 3, 4, 5 };
//显示测试值
printf("---【顺序栈】---\n");
printf("表L的size为%d\n表L的increment为%d\n", size, increment);
printf("待测试元素为:\n");
for (i = 0; i < LONGTH; i++) {
printf("%d\t", eArray[i]);
}
printf("\n");
//初始化顺序表
if (!InitList_Sq(L, size, increment)) {
printf("初始化顺序表失败\n");
exit(0);
}
printf("已初始化顺序表\n");
//判空
if(TRUE == ListEmpty_Sq(L)) printf("此表为空表\n");
else printf("此表不是空表\n");
//入表
printf("将待测元素入表:\n");
for (i = 0; i < LONGTH; i++) {
if(ERROR == Append_Sq(L, eArray[i])) printf("入表失败\n");;
}
printf("入表成功\n");
//遍历顺序表L
printf("此时表内元素为:\n");
ListTraverse_Sq(L, visit);
//出表
printf("\n将表尾元素入表到e\n");
if (ERROR == DeleteLast_Sq(L, e)) printf("出表失败\n");
printf("出表成功\n出表元素为%d\n",e);
//遍历顺序表L
printf("此时表内元素为:\n");
ListTraverse_Sq(L, visit);
//销毁顺序表
printf("\n销毁顺序表\n");
if(OK == DestroyList_Sq(L)) printf("销毁成功\n");
else printf("销毁失败\n");
return 0;
}

159
DataStructure/SqStack.cpp Normal file
View File

@ -0,0 +1,159 @@
/**
* @author huihut
* @E-mail:huihut@outlook.com
* @version 201699
*
*
*/
#include "stdio.h"
#include "stdlib.h"
#include "malloc.h"
//5个常量定义
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define OVERFLOW -1
//测试程序长度定义
#define LONGTH 5
//类型定义
typedef int Status;
typedef int ElemType;
//顺序栈的类型
typedef struct {
ElemType *elem;
int top;
int size;
int increment;
} SqSrack;
//函数声明
Status InitStack_Sq(SqSrack &S, int size, int inc); //初始化顺序栈
Status DestroyStack_Sq(SqSrack &S); //销毁顺序栈
Status StackEmpty_Sq(SqSrack S); //判断S是否空若空则返回TRUE否则返回FALSE
void ClearStack_Sq(SqSrack &S); //清空栈S
Status Push_Sq(SqSrack &S, ElemType e); //元素e压入栈S
Status Pop_Sq(SqSrack &S, ElemType &e); //栈S的栈顶元素出栈并用e返回
Status GetTop_Sq(SqSrack S, ElemType &e); //取栈S的栈顶元素并用e返回
//初始化顺序栈
Status InitStack_Sq(SqSrack &S, int size, int inc) {
S.elem = (ElemType *)malloc(size * sizeof(ElemType));
if (NULL == S.elem) return OVERFLOW;
S.top = 0;
S.size = size;
S.increment = inc;
return OK;
}
//销毁顺序栈
Status DestroyStack_Sq(SqSrack &S) {
free(S.elem);
S.elem = NULL;
return OK;
}
//判断S是否空若空则返回TRUE否则返回FALSE
Status StackEmpty_Sq(SqSrack S) {
if (0 == S.top) return TRUE;
return FALSE;
}
//清空栈S
void ClearStack_Sq(SqSrack &S) {
if (0 == S.top) return;
S.size = 0;
S.top = 0;
}
//元素e压入栈S
Status Push_Sq(SqSrack &S, ElemType e) {
ElemType *newbase;
if (S.top >= S.size) {
newbase = (ElemType *)realloc(S.elem, (S.size + S.increment) * sizeof(ElemType));
if (NULL == newbase) return OVERFLOW;
S.elem = newbase;
S.size += S.increment;
}
S.elem[S.top++] = e;
return OK;
}
//取栈S的栈顶元素并用e返回
Status GetTop_Sq(SqSrack S, ElemType &e) {
if (0 == S.top) return ERROR;
e = S.elem[S.top - 1];
return e;
}
//栈S的栈顶元素出栈并用e返回
Status Pop_Sq(SqSrack &S, ElemType &e) {
if (0 == S.top) return ERROR;
e = S.elem[S.top - 1];
S.top--;
return e;
}
int main() {
//定义栈S
SqSrack S;
//定义测量值
int size, increment, i;
//初始化测试值
size = LONGTH;
increment = LONGTH;
ElemType e, eArray[LONGTH] = { 1, 2, 3, 4, 5 };
//显示测试值
printf("---【顺序栈】---\n");
printf("栈S的size为%d\n栈S的increment为%d\n", size, increment);
printf("待测试元素为:\n");
for (i = 0; i < LONGTH; i++) {
printf("%d\t", eArray[i]);
}
printf("\n");
//初始化顺序栈
if (!InitStack_Sq(S, size, increment)) {
printf("初始化顺序栈失败\n");
exit(0);
}
printf("已初始化顺序栈\n");
//入栈
for (i = 0; i < S.size; i++) {
if (!Push_Sq(S, eArray[i])) {
printf("%d入栈失败\n", eArray[i]);
exit(0);
}
}
printf("已入栈\n");
//判断非空
if(StackEmpty_Sq(S)) printf("S栈为空\n");
else printf("S栈非空\n");
//取栈S的栈顶元素
printf("栈S的栈顶元素为\n");
printf("%d\n", GetTop_Sq(S, e));
//栈S元素出栈
printf("栈S元素出栈为\n");
for (i = 0, e = 0; i < S.size; i++) {
printf("%d\t", Pop_Sq(S, e));
}
printf("\n");
//清空栈S
ClearStack_Sq(S);
printf("已清空栈S\n");
return 0;
}

View File

@ -43,6 +43,8 @@
#### 顺序栈Sequence Stack
[SqStack.cpp](DataStructure/SqStack.cpp)
```cpp
typedef struct {
ElemType *elem;
@ -79,6 +81,8 @@ typedef struct {
#### 顺序表Sequence List
[SqList.cpp](DataStructure/SqList.cpp)
```cpp
typedef struct {
ElemType *elem;
@ -92,6 +96,10 @@ typedef struct {
### 链式结构
[LinkList.cpp](DataStructure/LinkList.cpp)
[LinkList_with_head.cpp](DataStructure/LinkList_with_head.cpp)
```cpp
typedef struct LNode {
ElemType data;
@ -119,6 +127,8 @@ typedef struct LNode {
### 哈希表
[HashTable.cpp](DataStructure/HashTable.cpp)
#### 概念
哈希函数:`H(key): K -> D , key ∈ K`
@ -227,6 +237,8 @@ typedef struct GLNode1 {
### 二叉树
[BinaryTree.cpp](DataStructure/BinaryTree.cpp)
#### 性质
1. 非空二叉树第 i 层最多 2^(i-1) 个结点 (i >= 1)
@ -240,6 +252,14 @@ typedef struct GLNode1 {
#### 存储结构
```cpp
typedef struct BiTNode
{
TElemType data;
struct BiTNode *lchild, *rchild;
}BiTNode, *BiTree;
```
##### 顺序存储
![](images/SqBinaryTree.png)
@ -269,7 +289,7 @@ typedef struct GLNode1 {
* LR型根的左孩子左旋再右旋
* RL型右孩子的左子树先右旋再左旋
### 森林
### 其他树及森林
#### 树的存储结构
@ -281,12 +301,14 @@ typedef struct GLNode1 {
一种不相交的子集所构成的集合 S = {S1, S2, ..., Sn}
#### 平衡二叉树AVL树
#### 红黑树
#### B树
#### B+树
#### 红黑树
#### 八叉树
### 图