mirror of
https://github.com/huihut/interview.git
synced 2024-03-22 13:10:48 +08:00
37 lines
865 B
C++
37 lines
865 B
C++
|
#include <stdio.h>
|
||
|
|
||
|
//递归法
|
||
|
int Neumann2_4_12(int n) {
|
||
|
|
||
|
//由图可知第0次有1个方格
|
||
|
if (n == 0) return 1;
|
||
|
|
||
|
//递推关系的求解请查看说明文档
|
||
|
return Neumann2_4_12(n - 1) + 4 * n;
|
||
|
}
|
||
|
|
||
|
int main() {
|
||
|
int n = 0, a = 0;
|
||
|
|
||
|
printf("------冯诺依曼邻居问题------\n");
|
||
|
printf("已知:\n");
|
||
|
printf(" 0 阶冯诺依曼邻居的元胞数为 1 \n");
|
||
|
printf(" 1 阶冯诺依曼邻居的元胞数为 5 \n");
|
||
|
printf(" 2 阶冯诺依曼邻居的元胞数为 13 \n");
|
||
|
printf("求:\n");
|
||
|
printf(" n 阶冯诺依曼邻居的元胞数\n");
|
||
|
printf("----------------------------\n");
|
||
|
printf("请输入n\n");
|
||
|
scanf("%d", &n);
|
||
|
|
||
|
//建立递推关系,使用递归求解
|
||
|
a = Neumann2_4_12(n);
|
||
|
|
||
|
printf("------------通项法-------------\n");
|
||
|
printf(" %d 阶冯诺依曼邻居的元胞数为 %d\3n", n, a);
|
||
|
|
||
|
getchar();
|
||
|
getchar();
|
||
|
return 0;
|
||
|
}
|