mirror of
https://github.com/huihut/interview.git
synced 2024-03-22 13:10:48 +08:00
34 lines
777 B
C++
34 lines
777 B
C++
|
#include <stdio.h>
|
||
|
|
||
|
//通项法
|
||
|
int Neumann2_3_12(int n) {
|
||
|
|
||
|
//通项公式的求解请查看说明文档
|
||
|
return 2 * n*n + 2 * n + 1;
|
||
|
}
|
||
|
|
||
|
int main() {
|
||
|
int n = 0, a = 0;
|
||
|
|
||
|
printf("------冯诺依曼邻居问题------\n");
|
||
|
printf("已知:\n");
|
||
|
printf(" 0 阶冯诺依曼邻居的元胞数为 1 \n");
|
||
|
printf(" 1 阶冯诺依曼邻居的元胞数为 5 \n");
|
||
|
printf(" 2 阶冯诺依曼邻居的元胞数为 13 \n");
|
||
|
printf("求:\n");
|
||
|
printf(" n 阶冯诺依曼邻居的元胞数\n");
|
||
|
printf("----------------------------\n");
|
||
|
printf("请输入n\n");
|
||
|
scanf("%d", &n);
|
||
|
|
||
|
//用通项公式求解
|
||
|
a = Neumann2_3_12(n);
|
||
|
|
||
|
printf("------------通项法-------------\n");
|
||
|
printf(" %d 阶冯诺依曼邻居的元胞数为 %d\n", n, a);
|
||
|
|
||
|
getchar();
|
||
|
getchar();
|
||
|
return 0;
|
||
|
}
|