mirror of
https://github.com/heqin-zhu/algorithm.git
synced 2024-03-22 13:30:46 +08:00
475 lines
18 KiB
Markdown
475 lines
18 KiB
Markdown
---
|
||
title: 图算法
|
||
date: 2018-09-06 19:10
|
||
categories: 数据结构与算法
|
||
tags: [图,算法]
|
||
keywords: 图,算法
|
||
mathjax: true
|
||
description:
|
||
---
|
||
|
||
<!-- TOC -->
|
||
|
||
- [1. 图](#1-图)
|
||
- [1.1. 概念](#11-概念)
|
||
- [1.1.1. 性质](#111-性质)
|
||
- [1.2. 图的表示](#12-图的表示)
|
||
- [1.3. 树](#13-树)
|
||
- [2. 搜索](#2-搜索)
|
||
- [2.1. BFS](#21-bfs)
|
||
- [2.2. DFS](#22-dfs)
|
||
- [2.2.1. DFS 的性质](#221-dfs-的性质)
|
||
- [2.3. 拓扑排序](#23-拓扑排序)
|
||
- [2.4. 强连通分量](#24-强连通分量)
|
||
- [3. 最小生成树](#3-最小生成树)
|
||
- [3.1. Kruskal 算法](#31-kruskal-算法)
|
||
- [3.2. Prim 算法](#32-prim-算法)
|
||
- [4. 单源最短路](#4-单源最短路)
|
||
- [4.1. 负权重的边](#41-负权重的边)
|
||
- [4.2. 初始化](#42-初始化)
|
||
- [4.3. 松弛操作](#43-松弛操作)
|
||
- [4.4. 有向无环图的单源最短路问题](#44-有向无环图的单源最短路问题)
|
||
- [4.5. Bellman-Ford 算法](#45-bellman-ford-算法)
|
||
- [4.6. Dijkstra 算法](#46-dijkstra-算法)
|
||
- [5. 所有结点对的最短路问题](#5-所有结点对的最短路问题)
|
||
- [5.1. 矩阵乘法](#51-矩阵乘法)
|
||
- [5.2. Floyd-Warshall 算法](#52-floyd-warshall-算法)
|
||
- [5.3. Johnson 算法](#53-johnson-算法)
|
||
- [6. 最大流](#6-最大流)
|
||
- [6.1. 定理](#61-定理)
|
||
- [6.2. 多个源,汇](#62-多个源汇)
|
||
- [6.3. Ford-Fulkerson 方法](#63-ford-fulkerson-方法)
|
||
- [6.3.1. 残存网络](#631-残存网络)
|
||
- [6.3.2. 增广路径](#632-增广路径)
|
||
- [6.3.3. 割](#633-割)
|
||
- [6.4. 基本的 Ford-Fulkerson算法](#64-基本的-ford-fulkerson算法)
|
||
- [6.5. TBD](#65-tbd)
|
||
- [7. 参考资料](#7-参考资料)
|
||
|
||
<!-- /TOC -->
|
||
<a id="markdown-1-图" name="1-图"></a>
|
||
# 1. 图
|
||
<a id="markdown-11-概念" name="11-概念"></a>
|
||
## 1.1. 概念
|
||
* 顶
|
||
* 顶点的度 d
|
||
* 边
|
||
* 相邻
|
||
* 重边
|
||
* 环
|
||
* 完全图: 所有顶都相邻
|
||
* 二分图: $V(G) = X \cup Y, X\cap Y = \varnothing$, X中, Y 中任两顶不相邻
|
||
* 轨道
|
||
* 圈
|
||
<a id="markdown-111-性质" name="111-性质"></a>
|
||
### 1.1.1. 性质
|
||
* $\sum_{v\in V} d(v) = 2|E|$
|
||
* G是二分图 $\Leftrightarrow$ G无奇圈
|
||
* 树是无圈连通图
|
||
* 树中, $|E| = |V| -1$
|
||
<a id="markdown-12-图的表示" name="12-图的表示"></a>
|
||
## 1.2. 图的表示
|
||
* 邻接矩阵
|
||
* 邻接链表
|
||
![](https://upload-images.jianshu.io/upload_images/7130568-57ce6db904992656.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||
|
||
<a id="markdown-13-树" name="13-树"></a>
|
||
## 1.3. 树
|
||
无圈连通图, $E = V-1$, 详细见[树](https://mbinary.coding.me/tree.html),
|
||
|
||
<a id="markdown-2-搜索" name="2-搜索"></a>
|
||
# 2. 搜索
|
||
|
||
求图的生成树[^1]
|
||
|
||
<a id="markdown-21-bfs" name="21-bfs"></a>
|
||
## 2.1. BFS
|
||
```python
|
||
for v in V:
|
||
v.d = MAX
|
||
v.pre = None
|
||
v.isFind = False
|
||
root. isFind = True
|
||
root.d = 0
|
||
que = [root]
|
||
while que !=[]:
|
||
nd = que.pop(0)
|
||
for v in Adj(nd):
|
||
if not v.isFind :
|
||
v.d = nd.d+1
|
||
v.pre = nd
|
||
v.isFind = True
|
||
que.append(v)
|
||
```
|
||
时间复杂度 $O(V+E)$
|
||
<a id="markdown-22-dfs" name="22-dfs"></a>
|
||
## 2.2. DFS
|
||
$\Theta(V+E)$
|
||
```python
|
||
def dfs(G):
|
||
time = 0
|
||
for v in V:
|
||
v.pre = None
|
||
v.isFind = False
|
||
for v in V : # note this,
|
||
if not v.isFind:
|
||
dfsVisit(v)
|
||
def dfsVisit(G,u):
|
||
time =time+1
|
||
u.begin = time
|
||
u.isFind = True
|
||
for v in Adj(u):
|
||
if not v.isFind:
|
||
v.pre = u
|
||
dfsVisit(G,v)
|
||
time +=1
|
||
u.end = time
|
||
```
|
||
begin, end 分别是结点的发现时间与完成时间
|
||
<a id="markdown-221-dfs-的性质" name="221-dfs-的性质"></a>
|
||
### 2.2.1. DFS 的性质
|
||
* 其生成的前驱子图$G_{pre}$ 形成一个由多棵树构成的森林, 这是因为其与 dfsVisit 的递归调用树相对应
|
||
* 括号化结构
|
||
![](https://upload-images.jianshu.io/upload_images/7130568-ba62e68e5b883b6c.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||
* 括号化定理:
|
||
考察两个结点的发现时间与结束时间的区间 [u,begin,u.end] 与 [v.begin,v.end]
|
||
* 如果两者没有交集, 则两个结点在两个不同的子树上(递归树)
|
||
* 如果 u 的区间包含在 v 的区间, 则 u 是v 的后代
|
||
|
||
<a id="markdown-23-拓扑排序" name="23-拓扑排序"></a>
|
||
## 2.3. 拓扑排序
|
||
利用 DFS, 结点的完成时间的逆序就是拓扑排序
|
||
|
||
同一个图可能有不同的拓扑排序
|
||
<a id="markdown-24-强连通分量" name="24-强连通分量"></a>
|
||
## 2.4. 强连通分量
|
||
在有向图中, 强连通分量中的结点互达
|
||
定义 $Grev$ 为 $G$ 中所有边反向后的图
|
||
|
||
将图分解成强连通分量的算法
|
||
在 Grev 上根据 G 中结点的拓扑排序来 dfsVisit, 即
|
||
```python
|
||
compute Grev
|
||
initalization
|
||
for v in topo-sort(G.V):
|
||
if not v.isFind: dfsVisit(Grev,v)
|
||
```
|
||
然后得到的DFS 森林(也是递归树森林)中每个树就是一个强连通分量
|
||
|
||
<a id="markdown-3-最小生成树" name="3-最小生成树"></a>
|
||
# 3. 最小生成树
|
||
利用了贪心算法,
|
||
<a id="markdown-31-kruskal-算法" name="31-kruskal-算法"></a>
|
||
## 3.1. Kruskal 算法
|
||
总体上, 从最开始 每个结点就是一颗树的森林中(不相交集合, 并查集), 逐渐添加不形成圈的(两个元素不再同一个集合),最小边权的边.
|
||
```python
|
||
edges=[]
|
||
for edge as u,v in sorted(G.E):
|
||
if find-set(u) != find-set(v):
|
||
edges.append(edge)
|
||
union(u,v)
|
||
return edges
|
||
```
|
||
如果并查集的实现采用了 按秩合并与路径压缩技巧, 则 find 与 union 的时间接近常数
|
||
所以时间复杂度在于排序边, 即 $O(ElgE)$, 而 $ E\< V^2 $, 所以 $lgE = O(lgV)$, 时间复杂度为 $O(ElgV)$
|
||
<a id="markdown-32-prim-算法" name="32-prim-算法"></a>
|
||
## 3.2. Prim 算法
|
||
用了 BFS, 类似 Dijkstra 算法
|
||
从根结点开始 BFS, 一直保持成一颗树
|
||
```python
|
||
for v in V:
|
||
v.minAdjEdge = MAX
|
||
v.pre = None
|
||
root.minAdjEdge = 0
|
||
que = priority-queue (G.V) # sort by minAdjEdge
|
||
while not que.isempty():
|
||
u = que.extractMin()
|
||
for v in Adj(u):
|
||
if v in que and v.minAdjEdge>w(u,v):
|
||
v.pre = u
|
||
v.minAdjEdge = w(u,v)
|
||
```
|
||
* 建堆 $O(V)$ `//note it's v, not vlgv`
|
||
* 主循环中
|
||
* extractMin: $O(VlgV)$
|
||
* in 操作 可以另设标志位, 在常数时间完成, 总共 $O(E)$
|
||
* 设置结点的 minAdjEdge, 需要$O(lgv)$, 循环 E 次,则 总共$O(ElgV)$
|
||
|
||
综上, 时间复杂度为$O(ElgV)$
|
||
如果使用的是 [斐波那契堆](https://mbinary.coding.me/fib-heap.html), 则可改进到 $O(E+VlgV)$
|
||
|
||
<a id="markdown-4-单源最短路" name="4-单源最短路"></a>
|
||
# 4. 单源最短路
|
||
求一个结点到其他结点的最短路径, 可以用 Bellman-Ford算法, 或者 Dijkstra算法.
|
||
定义两个结点u,v间的最短路
|
||
$$
|
||
\delta(u,v) = \begin{cases}
|
||
min(w(path)),\quad u\xrightarrow{path} v\\
|
||
MAX, \quad u\nrightarrow v
|
||
\end{cases}
|
||
$$
|
||
问题的变体
|
||
* 单目的地最短路问题: 可以将所有边反向转换成求单源最短路问题
|
||
* 单结点对的最短路径
|
||
* 所有结点对最短路路径
|
||
|
||
<a id="markdown-41-负权重的边" name="41-负权重的边"></a>
|
||
## 4.1. 负权重的边
|
||
Dijkstra 算法不能处理负权边, 只能用 Bellman-Ford 算法,
|
||
而且如果有负值圈, 则没有最短路, bellman-ford算法也可以检测出来
|
||
<a id="markdown-42-初始化" name="42-初始化"></a>
|
||
## 4.2. 初始化
|
||
```python
|
||
def initialaize(G,s):
|
||
for v in G.V:
|
||
v.pre = None
|
||
v.distance = MAX
|
||
s.distance = 0
|
||
```
|
||
<a id="markdown-43-松弛操作" name="43-松弛操作"></a>
|
||
## 4.3. 松弛操作
|
||
```python
|
||
def relax(u,v,w):
|
||
if v.distance > u.distance + w:
|
||
v.distance = u.distance + w:
|
||
v.pre = u
|
||
```
|
||
性质
|
||
* 三角不等式: $\delta(s,v) \leqslant \delta(s,u) + w(u,v)$
|
||
* 上界: $v.distance \geqslant \delta(s,v)$
|
||
* 收敛: 对于某些结点u,v 如果s->...->u->v是图G中的一条最短路径,并且在对边,进行松弛前任意时间有 $u.distance=\delta(s,u)$则在之后的所有时间有 $v.distance=\delta(s,v)$
|
||
* 路径松弛性质: 如果$p=v_0 v_1 \ldots v_k$是从源结点下v0到结点vk的一条最短路径,并且对p中的边所进行松弛的次序为$(v_0,v_1),(v_1,v_2), \ldots ,(v_{k-1},v_k)$, 则 $v_k.distance = \delta(s,v_k)$
|
||
该性质的成立与任何其他的松弛操作无关,即使这些松弛操作是与对p上的边所进行的松弛操作穿插进行的。
|
||
|
||
证明
|
||
![](https://upload-images.jianshu.io/upload_images/7130568-424a6929bd389825.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||
|
||
<a id="markdown-44-有向无环图的单源最短路问题" name="44-有向无环图的单源最短路问题"></a>
|
||
## 4.4. 有向无环图的单源最短路问题
|
||
```python
|
||
def dag-shortest-path(G,s):
|
||
initialize(G,s)
|
||
for u in topo-sort(G.V):
|
||
for v in Adj(v):
|
||
relax(u,v,w(u,v))
|
||
```
|
||
<a id="markdown-45-bellman-ford-算法" name="45-bellman-ford-算法"></a>
|
||
## 4.5. Bellman-Ford 算法
|
||
```python
|
||
def bellman-ford(G,s):
|
||
initialize(G,s)
|
||
for ct in range(|V|-1): # v-1times
|
||
for u,v as edge in E:
|
||
relax(u,v,w(u,v))
|
||
for u,v as edge in E:
|
||
if v.distance > u.distance + w(u,v):
|
||
return False
|
||
return True
|
||
```
|
||
第一个 for 循环就是进行松弛操作, 最后结果已经存储在 结点的distance 和 pre 属性中了, 第二个 for 循环利用三角不等式检查有不有负值圈.
|
||
|
||
下面是证明该算法的正确性![](https://upload-images.jianshu.io/upload_images/7130568-f84e00ac35aadc81.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||
|
||
<a id="markdown-46-dijkstra-算法" name="46-dijkstra-算法"></a>
|
||
## 4.6. Dijkstra 算法
|
||
```python
|
||
def dijkstra(G,s):
|
||
initialize(G,s)
|
||
paths=[]
|
||
q = priority-queue(G.V) # sort by distance
|
||
while not q.empty():
|
||
u = q.extract-min()
|
||
paths.append(u)
|
||
for v in Adj(u):
|
||
relax(u,v,w(u,v))
|
||
```
|
||
|
||
<a id="markdown-5-所有结点对的最短路问题" name="5-所有结点对的最短路问题"></a>
|
||
# 5. 所有结点对的最短路问题
|
||
<a id="markdown-51-矩阵乘法" name="51-矩阵乘法"></a>
|
||
## 5.1. 矩阵乘法
|
||
使用动态规划算法, 可以得到最短路径的结构
|
||
设 $l_{ij}^{(m)}$为从结点i 到结点 j 的至多包含 m 条边的任意路径的最小权重,当m = 0, 此时i=j, 则 为0,
|
||
可以得到递归定义
|
||
$$
|
||
l_{ij}^{(m)} =\min( l_{ij}^{(m-1)}, \min_{1\leqslant k\leqslant n}( l_{ik}^{(m-1)}+w_{kj})) = \min_{1\leqslant k\leqslant n}( l_{ik}^{(m-1)}+w_{kj}))
|
||
$$
|
||
由于是简单路径, 则包含的边最多为 |V|-1 条, 所以
|
||
$$
|
||
\delta(i,j) = l_{ij}^{(|V|-1)} = l_{ij}^{(|V|)} =l_{ij}^{(|V| + 1)}= ...
|
||
$$
|
||
所以可以自底向上计算, 如下
|
||
输入权值矩阵 $W(w_{ij})), L^{(m-1)}$,输出$ L^{(m)}$, 其中 $L^{(1)} = W$,
|
||
```python
|
||
n = L.rows
|
||
L' = new matrix(nxn)
|
||
for i in range(n):
|
||
for j in range(n):
|
||
l'[i][j] = MAX
|
||
for k in range(n):
|
||
l'[i][j] = min(l'[i][j], l[i][k]+w[k][j])
|
||
return L'
|
||
```
|
||
可以看出该算法与矩阵乘法的关系
|
||
$L^{(m)} = W^m$,
|
||
所以可以直接计算乘法, 每次计算一个乘积是 $O(V^3)$, 计算 V 次, 所以总体 $O(V^4)$, 使用矩阵快速幂可以将时间复杂度降低为$O(V^3lgV)$
|
||
```python
|
||
def f(W):
|
||
L = W
|
||
i = 1
|
||
while i<W.rows:
|
||
L = L*L
|
||
i*=2
|
||
return L
|
||
```
|
||
|
||
<a id="markdown-52-floyd-warshall-算法" name="52-floyd-warshall-算法"></a>
|
||
## 5.2. Floyd-Warshall 算法
|
||
同样要求可以存在负权边, 但不能有负值圈. 用动态规划算法:
|
||
设 $ d_{ij}^{(k)}$ 为 从 i 到 j 所有中间结点来自集合 ${\{1,2,\ldots,k\}}$ 的一条最短路径的权重. 则有
|
||
$$
|
||
d_{ij}^{(k)} = \begin{cases}
|
||
w_{ij},\quad k=0\\
|
||
min(d_{ij}^{(k-1)},d_{ik}^{(k-1)}+d_{kj}^{(k-1)}),\quad k\geqslant 1
|
||
\end{cases}
|
||
$$
|
||
而且为了找出路径, 需要记录前驱结点, 定义如下前驱矩阵 $\Pi$, 设 $ \pi_{ij}^{(k)}$ 为 从 i 到 j 所有中间结点来自集合 ${\{1,2,\ldots,k\}}$ 的最短路径上 j 的前驱结点
|
||
则
|
||
$$
|
||
\pi_{ij}^{(0)} = \begin{cases}
|
||
nil,\quad i=j \ or \ w_{ij}=MAX\\
|
||
i, \quad i\neq j and \ w_{ij}<MAX
|
||
\end{cases}
|
||
$$
|
||
对 $k\geqslant 1$
|
||
$$
|
||
\pi_{ij}^{(k)} = \begin{cases}
|
||
\pi_{ij}^{(k-1)} ,\quad d_{ij}^{(k-1)}\leqslant d_{ik}^{(k-1)}+d_{kj}^{(k-1)}\\
|
||
\pi_{kj}^{(k-1)} ,\quad otherwise
|
||
\end{cases}
|
||
$$
|
||
|
||
由此得出此算法
|
||
```python
|
||
def floyd-warshall(w):
|
||
n = len(w)
|
||
d= w
|
||
initial pre # 0
|
||
for k in range(n):
|
||
d2 = d.copy()
|
||
pre2 = pre.copy()
|
||
for j in range(n):
|
||
for i in range(v)
|
||
if d[i][j] > d[i][k]+d[k][j]:
|
||
d2[i][j] = min(d[i][j], d[i][k]+d[k][j])
|
||
pre2[i][j] = pre[k][j]
|
||
pre = pre2
|
||
d = d2
|
||
return d,pre
|
||
```
|
||
<a id="markdown-53-johnson-算法" name="53-johnson-算法"></a>
|
||
## 5.3. Johnson 算法
|
||
思路是通过重新赋予权重, 将图中负权边转换为正权,然后就可以用 dijkstra 算法(要求是正值边)来计算一个结点到其他所有结点的, 然后对所有结点用dijkstra
|
||
|
||
1. 首先构造一个新图 G'
|
||
先将G拷贝到G', 再添加一个新结点 s, 添加 G.V条边, s 到G中顶点的, 权赋值为 0
|
||
2. 用 Bellman-Ford 算法检查是否有负值圈, 如果没有, 同时求出 $\delta(s,v) 记为 h(v)$
|
||
3. 求新的非负值权, w'(u,v) = w(u,v)+h(u)-h(v)
|
||
4. 对所有结点在 新的权矩阵w'上 用 Dijkstra 算法
|
||
![image.png](https://upload-images.jianshu.io/upload_images/7130568-6c2146ad64d692f3.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||
|
||
```python
|
||
JOHNSON (G, u)
|
||
|
||
s = newNode
|
||
G' = G.copy()
|
||
G'.addNode(s)
|
||
for v in G.V: G'.addArc(s,v,w=0)
|
||
|
||
if BELLMAN-FORD(G' , w, s) ==FALSE
|
||
error "the input graph contains a negative-weight cycle"
|
||
|
||
for v in G'.V:
|
||
# computed by the bellman-ford algorithm, delta(s,v) is the shortest distance from s to v
|
||
h(v) = delta(s,v)
|
||
for edge(u,v) in G'.E:
|
||
w' = w(u,v)+h(u)-h(v)
|
||
d = matrix(n,n)
|
||
for u in G:
|
||
dijkstra(G,w',u) # compute delta' for all v in G.V
|
||
for v in G.V:
|
||
d[u][v] = delta'(u,v) + h(v)-h(u)
|
||
return d
|
||
```
|
||
<a id="markdown-6-最大流" name="6-最大流"></a>
|
||
# 6. 最大流
|
||
G 是弱连通严格有向加权图, s为源, t 为汇, 每条边e容量 c(e), 由此定义了网络N(G,s,t,c(e)),
|
||
* 流函数 $f(e):E \rightarrow R$
|
||
$$
|
||
\begin{aligned}
|
||
(1)\quad & 0\leqslant f(e) \leqslant c(e),\quad e \in E\\
|
||
(2)\quad & \sum_{e\in \alpha(v)} f(e)= \sum_{e\in \beta(v)}f(e),\quad v \in V-\{s,t\}
|
||
\end{aligned}
|
||
$$
|
||
其中 $\alpha(v)$ 是以 v 为头的边集, $\beta(v)$是以 v 为尾的边集
|
||
* 流量: $F = \sum_{e\in \alpha(t)} f(e)- \sum_{e\in -\beta(t)}f(e),$
|
||
* 截$(S,\overline S)$: $S\subset V,s\in S, t\in \overline S =V-S$
|
||
* 截量$C(S) = \sum_{e\in(S,\overline S)}c(e)$
|
||
<a id="markdown-61-定理" name="61-定理"></a>
|
||
## 6.1. 定理
|
||
参考 图论[^2]
|
||
* 对于任一截$(S,\overline S)$, 有 $F = \sum_{e\in (S,\overline S)} f(e)- \sum_{e\in(\overline S,S)}f(e),$
|
||
![prove](https://upload-images.jianshu.io/upload_images/7130568-19bf6cc3c7d6ce06.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||
* $F\leqslant C(S)$
|
||
证明: 由上面定理
|
||
$$F = \sum_{e\in (S,\overline S)} f(e)- \sum_{e\in(\overline S,S)}f(e),$$
|
||
而 $0\leqslant f(e) \leqslant c(e)$, 则
|
||
$$F\leqslant \sum_{e\in (S,\overline S)} f(e) \leqslant \sum_{e\in (S,\overline S)} c(e) = C(S) $$
|
||
* 最大流,最小截: 若$F= C(S) $, 则F'是最大流量, C(S) 是最小截量
|
||
<a id="markdown-62-多个源汇" name="62-多个源汇"></a>
|
||
## 6.2. 多个源,汇
|
||
可以新增一个总的源,一个总的汇,
|
||
![](https://upload-images.jianshu.io/upload_images/7130568-3e9e87fdf9655883.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||
|
||
<a id="markdown-63-ford-fulkerson-方法" name="63-ford-fulkerson-方法"></a>
|
||
## 6.3. Ford-Fulkerson 方法
|
||
由于其实现可以有不同的运行时间, 所以称其为方法, 而不是算法.
|
||
思路是 循环增加流的值, 在一个关联的"残存网络" 中寻找一条"增广路径", 然后对这些边进行修改流量. 重复直至残存网络上不再存在增高路径为止.
|
||
```python
|
||
def ford-fulkerson(G,s,t):
|
||
initialize flow f to 0
|
||
while exists an augmenting path p in residual network Gf:
|
||
augment flow f along p
|
||
return f
|
||
```
|
||
<a id="markdown-631-残存网络" name="631-残存网络"></a>
|
||
### 6.3.1. 残存网络
|
||
![](https://upload-images.jianshu.io/upload_images/7130568-c74a571b9121dbbf.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||
|
||
<a id="markdown-632-增广路径" name="632-增广路径"></a>
|
||
### 6.3.2. 增广路径
|
||
![](https://upload-images.jianshu.io/upload_images/7130568-b9e841cfa4d04b57.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||
<a id="markdown-633-割" name="633-割"></a>
|
||
### 6.3.3. 割
|
||
![](https://upload-images.jianshu.io/upload_images/7130568-74b065e86eb285b7.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||
<a id="markdown-64-基本的-ford-fulkerson算法" name="64-基本的-ford-fulkerson算法"></a>
|
||
## 6.4. 基本的 Ford-Fulkerson算法
|
||
```python
|
||
def ford-fulkerson(G,s,t):
|
||
for edge in G.E: edge.f = 0
|
||
while exists path p:s->t in Gf:
|
||
cf(p) = min{cf(u,v):(u,v) is in p}
|
||
for edge in p:
|
||
if edge in E:
|
||
edge.f +=cf(p)
|
||
else: reverse_edge.f -=cf(p)
|
||
```
|
||
|
||
<a id="markdown-65-tbd" name="65-tbd"></a>
|
||
## 6.5. TBD
|
||
|
||
<a id="markdown-7-参考资料" name="7-参考资料"></a>
|
||
# 7. 参考资料
|
||
[^1]: 算法导论
|
||
[^2]: 图论, 王树禾
|