algorithm-in-python/math/numberTheory/modulo_equation.py
2020-04-15 12:28:20 +08:00

142 lines
4.0 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

''' mbinary
#########################################################################
# File : modulo_equation.py
# Author: mbinary
# Mail: zhuheqin1@gmail.com
# Blog: https://mbinary.xyz
# Github: https://github.com/mbinary
# Created Time: 2018-3-4 21:14
# Description:
`--` represents modulo symbol
#########################################################################
'''
import re
from gcd import xgcd
from euler import phi
from isPrime import isPrime
from factor import factor
def ind(m, g):
''' mod m ,primary root g -> {n:indg n}'''
return {j: i for i in range(m-1)
for j in range(m) if (g**i-j) % m == 0}
def gs(m, num=100):
'''return list of m's primary roots below num'''
p = phi(m)
mp = factor(p)
checkLst = [p//i for i in mp]
return [i for i in range(2, num) if all((i**n-1) % m != 0 for n in checkLst)]
def minG(m):
p = phi(m)
mp = factor(p)
checkLst = [p//i for i in mp]
i = 2
while 1:
if all((i**n-1) % m != 0 for n in checkLst):
return i
i += 1
class solve:
def __init__(self, equ=None):
self.linearPat = re.compile(r'\s*(\d+)\s*--\s*(\d+)[\s\(]*mod\s*(\d+)')
self.sol = []
#self.m = m
#self.ind_mp = ind(m,minG(m))
def noSol(self):
print('equation {equ} has no solution'.format(equ=self.equ))
def error(self):
print("Error! The divisor m must be postive integer")
def solveLinear(self, a, b, m):
'''ax--b(mod m): solve linear equation with one unknown
return ([x1,x2,...],m)
'''
a, b, m = self.check(a, b, m)
g, x, y = xgcd(a, m)
if a*b % g != 0:
self.noSol()
return None
sol = x*b//g
m0 = m//g
sols = [(sol+i*m0) % m for i in range(g)]
print('{}x--{}(mod {}), solution: {} mod {}'.format(a, b, m, sols, m))
return (sols, m)
def check(self, a, b, m):
if m <= 0:
self.error()
return None
if a < 0:
a, b = -a, -b # important
if b < 0:
b += -b//m * m
return a, b, m
def solveHigh(self, a, n, b, m):
''' ax^n -- b (mod m) ind_mp is a dict of m's {n: indg n}'''
ind_mp = ind(m, minG(m))
tmp = ind_mp[b] - ind_mp[a]
if tmp < 0:
tmp += m
sol = self.solveLinear(n, tmp, phi(m))
re_mp = {j: i for i, j in ind_mp.items()}
sols = [re_mp[i] for i in sol[0]]
print('{}x^{}--{}(mod {}), solution: {} mod {}'.format(a, n, b, m, sols, m))
return sols, m
def solveGroup(self, tups):
'''tups is a list of tongyu equation groups, like
[(a1,b1,m1),(a2,b2,m2)...]
and, m1,m2... are all primes
'''
mp = {}
print('solving group of equations: ')
for a, b, m in tups:
print('{}x--{}(mod {})'.format(a, b, m))
if m in mp:
if mp[m][0]*b != mp[m][1]*a:
self.noSol()
return
else:
mp[m] = (a, b)
product = 1
for i in mp.keys():
product *= i
sol = [0]
for i in mp:
xs, m = self.solveLinear(product//i*mp[i][0], 1, i)
new = []
for x in xs:
cur = x*product//i*mp[i][1]
for old in sol:
new.append(old+cur)
sol = new
sol = [i % product for i in sol]
print('final solution: {} mod {}'.format(sol, product))
return sol, product
def __call__(self):
s = input('输入同余方程,用--代表同于号形如3--5(mod 7)代表3x模7同余于5')
li = self.linearPat.findall(s)
li = [(int(a), int(b), int(m)) for a, b, m in li]
print(self.solveLinear(li[0]))
if __name__ == '__main__':
solver = solve()
res = solver.solveLinear(3, 6, 9)
print()
res = solver.solveHigh(1, 8, 3, 11)
print()
res = solver.solveGroup([(5, 11, 2), (3, 8, 5), (4, 1, 7)])