--- title: 『算法』概述 categories: 数据结构与算法 tags: [算法] keywords: mathjax: true top: --- - [1. 算法](#1-算法) - [2. 可以解决哪些类型的问题](#2-可以解决哪些类型的问题) - [3. 算法分析](#3-算法分析) - [4. 算法设计](#4-算法设计) - [4.1. 分治(divide and conquer)](#41-分治divide-and-conquer) - [5. 递归式](#5-递归式) - [5.1. 代换法](#51-代换法) - [5.1.1. 步骤](#511-步骤) - [5.1.2. 例子](#512-例子) - [5.1.3. 放缩](#513-放缩) - [5.1.4. 改变变量](#514-改变变量) - [5.2. 递归树](#52-递归树) - [5.3. 主方法(master method)](#53-主方法master-method) - [5.3.1. 记忆](#531-记忆) - [5.3.2. 证明](#532-证明) - [5.3.2.1. 证明当 n 为 b 的正合幂时成立](#5321-证明当-n-为-b-的正合幂时成立) - [5.3.2.2. 分析扩展至所有正整数 n 都成立](#5322-分析扩展至所有正整数-n-都成立) - [6. 随机算法](#6-随机算法) - [6.1. 随机排列数组(shuffle)](#61-随机排列数组shuffle) - [6.1.1. PERMUTE-BY-SORTING](#611-permute-by-sorting) - [6.1.2. RANDOMIZE-IN-PLACE](#612-randomize-in-place) - [7. 组合方程的近似算法](#7-组合方程的近似算法) - [8. 概率分析与指示器变量例子](#8-概率分析与指示器变量例子) - [8.1. 球与盒子](#81-球与盒子) - [8.2. 序列](#82-序列) - [9. 摊还分析](#9-摊还分析) - [9.1. 聚合分析(aggregate analysis)](#91-聚合分析aggregate-analysis) - [9.2. 核算法 (accounting method)](#92-核算法-accounting-method) - [9.3. 势能法(potential method)](#93-势能法potential-method) # 1. 算法 定义良好的计算过程,取输入,并产生输出. 即算法是一系列的计算步骤,将输入数据转化为输出结果 # 2. 可以解决哪些类型的问题 * 大数据的存储,以及开发出进行这方面数据分析的工具 * 网络数据的传输,寻路, 搜索 * 电子商务密码, (数值算法,数论) * 资源分配,最大效益 * ... # 3. 算法分析 衡量算法的优劣 ![](https://upload-images.jianshu.io/upload_images/7130568-d452e7efb6fb3433.jpg?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240) * $\omicron,O,\Omega,\Theta$ * 最坏情况, 平均情况 * 增长的量级$ O(1),O(logn), O(n), O(n^k), O(a^n) $ # 4. 算法设计 ## 4.1. 分治(divide and conquer) 结构上是递归的, 步骤: 分解,解决, 合并 eg 快排,归并排序 # 5. 递归式 $T(n) = aT(\frac{n} {b})+f(n)$ ## 5.1. 代换法 ### 5.1.1. 步骤 * 猜测解的形式 * 用数学归纳法找出常数 ### 5.1.2. 例子 $T(n) = 2T(\frac{n} {2})+n$ 猜测$T(n) = O(nlogn)$ 证明 $ T(n)\leqslant cnlogn$ 归纳奠基 n=2,3 归纳假设 $T(\frac{n} {2}) \leqslant \frac{cn}{2}$ 递归 $ \begin{aligned} T(n) &\leqslant 2c\frac{n}{2}log(\frac{n}{2}) + n \leqslant cnlog(\frac{n}{2}) \\ \end{aligned} $ ### 5.1.3. 放缩 对于 $T(n) = 2T(\frac{cn}{2}) + 1$ 如果 直接猜测 $T(n) = O (n)$ 不能证明, 而且不要猜测更高的界 $O (n^2)$ 可以放缩为 n-b ### 5.1.4. 改变变量 对于 $ T(n) = 2T(\sqrt{n})+logn $ 可以 令 `m = logn`, 得到 $T(2^m) = 2T(m^{\frac{m}{2}}) + m $ 令 $S(m) = T(2^m)$ 得到 $ S(m) = 2S(\frac{m}{2}) + m $ ## 5.2. 递归树 例如 $T(n) = 3T(\frac{n}{4}) + c n^2$ 不妨假设 n 为4的幂, 则有如下递归树 ![recursive-tree.jpg](https://upload-images.jianshu.io/upload_images/7130568-4a1b9b6ee852b725.jpg?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240) 每个结点是代价, 将每层加起来即可 ## 5.3. 主方法(master method) 对于 $T(n) = aT(\frac{n} {b})+f(n)$ $$ \begin{aligned} T(n)=\begin{cases} \Theta(n^{log_b a}),\quad f(n)=O(n^{ {log_b a}-\epsilon}) \\ \Theta(n^{log_b a}logn),\quad f(n)=\Theta(n^{log_b a}) \\ \Theta(f(n)),\quad f(n)=\Omega(n^{ {log_b a}+ \epsilon}),af(\frac{n}{b})\leqslant cf(n) \\ \qquad \qquad \quad \text{其中常数c<1,变量n任意大} \\ unknown, \quad others \end{cases} \end{aligned} $$ ### 5.3.1. 记忆 直观上, 比较 $n^{log_b a}$ 和 $f(n)$, 谁大就是谁, 这里的大是多项式上的比较, 即比较次数, 而不是渐近上的 比如 $n$ 与 $nlogn$ 渐近上后者大, 但多项式上是不能比较的 ### 5.3.2. 证明 #### 5.3.2.1. 证明当 n 为 b 的正合幂时成立 * 用递归树可以得到 总代价为 $\sum_{j=0}^{log_b n-1} a^j f(\frac{n}{b^j})$ * 决定上式的渐近界 * 结合前两点 #### 5.3.2.2. 分析扩展至所有正整数 n 都成立 主要是应用数学技巧来解决 floor, ceiling 函数的处理问题 # 6. 随机算法 ## 6.1. 随机排列数组(shuffle) ### 6.1.1. PERMUTE-BY-SORTING 给出初始数组, eg A={1,2,3}, 选择随机的优先级 P={16,4,10} 则得出 B={2,3,1},因为第二个(2)优先级最小, 为4, 接着第三个,最后第1个. 优先级数组的产生, 一般在 RANDOM(1,n^3), 这样优先级各不相同的概率至少为 1-1/n 由于要排序优先级数组, 所以时间复杂度 $O(nlogn)$ 如果优先级唯一, 则此算法可以 shuffle 数组 应证明 同样排列的概率是 $\frac{1}{n!}$ ### 6.1.2. RANDOMIZE-IN-PLACE ```python # arr: array to be shuffled n = len(arr) for i in range(n): swap(arr[i],arr[random(i,n-1)]) ``` 时间复杂度 $O(n)$ 证明 定义循环不变式: 对每个可能的 $A_n^{i-1}$ 排列, 其在 arr[1..i-1] 中的概率为 $\frac{1}{A_n^{i-1}}$ 初始化: i=1 成立 保持 : 假设 在第 i-1 次迭代之前,成立, 证明在第 i 次迭代之后, 仍然成立, 终止: 在 结束后, i=n+1, 得到 概率为 $\frac{1}{n!}$ # 7. 组合方程的近似算法 * Stiring's approximation: $ n! \approx \sqrt{2\pi n}\left(\frac{n}{e}\right)^n$ * 对于 $C_n^x=a$, 有 $x=\frac{ln^2 a}{n}$ * 对于 $C_x^n=a$, 有 $x=(a*n!)^{\frac{1}{n}}+\frac{n}{2}$ # 8. 概率分析与指示器变量例子 ## 8.1. 球与盒子 把相同的秋随机投到 b 个盒子里,问在每个盒子里至少有一个球之前,平均至少要投多少个球? 称投入一个空盒为击中, 即求取得 b 次击中的概率 设投 n 次, 称第 i 个阶段包括第 i-1 次击中到 第 i 次击中的球, 则第 i 次击中的概率为 $p_i=\frac{b-i+1}{b}$ 用 $n_i$表示第 i 阶段的投球数,则 $n=\sum_{i=1}^b n_i$ 且 $n_i$服从几何分布, $E(n_i)=\frac{b}{b-i+1}$, 则由期望的线性性, $$ E(n)=E(\sum_{i=1}^b n_i)=\sum_{i=1}^b E(n_i)=\sum_{i=1}^b \frac{b}{b-i+1}=b\sum_{i=1}^b \frac{1}{i}=b(lnb+O(1)) $$ 这个问题又被称为 赠券收集者问题(coupon collector's problem),即集齐 b 种不同的赠券,在随机情况下平均需要买 blnb 张 ## 8.2. 序列 抛 n 次硬币, 期望看到的连续正面的次数 答案是 $\Theta(logn)$ 记 长度至少为 k 的正面序列开始与第 i 次抛, 由于独立, 所有 k 次抛掷都是正面的 概率为 $P(A_{ik})=\frac{1}{2^k}$,对于 $k=2\lceil lgn\rceil$ ![coin1.jpg](https://upload-images.jianshu.io/upload_images/7130568-780b9795b6d9a2bd.jpg?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240) ![coin2.jpg](https://upload-images.jianshu.io/upload_images/7130568-7d112b304e2d78b6.jpg?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240) ![coin3.jpg](https://upload-images.jianshu.io/upload_images/7130568-f104d530f2a57c99.jpg?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240) ![coin4.jpg](https://upload-images.jianshu.io/upload_images/7130568-be0fd1b57a5ff305.jpg?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240) # 9. 摊还分析 ## 9.1. 聚合分析(aggregate analysis) 一个 n 个操作的序列最坏情况下花费的总时间为$T(n)$, 则在最坏情况下, 每个操作的摊还代价为 $\frac{T(n)}{n}$ 如栈中的 push, pop 操作都是 $O(1)$, 增加一个新操作 `multipop`, ```python def multipop(stk,k): while not stk.empty() and k>0: stk.pop() k-=1 ``` multipop 的时间复杂度为 min(stk.size,k), 最坏情况为 $O(n)$, 则 n 个包含 push pop multipop 的操作列的最坏情况是 $O(n^2)$, 并不是这样, 注意到, 必须栈中有元素, 再 pop, 所以 push 操作与pop 操作(包含 multipop中的pop), 个数相当, 所以 实际上应为 $O(n)$, 每个操作的摊还代价 为$O(1)$ ## 9.2. 核算法 (accounting method) 对不同操作赋予不同费用 cost (称为摊还代价 $c_i'$), 可能多于或者少于其实际代价 $c_i$ 当 $c_i'>c_i$, 将 $c_i'-c_i$( `credit`) 存入数据结构中的特定对象.. 对于后续 $c_i' ## 9.3. 势能法(potential method) 势能释放用来支付未来操作的代价, 势能是整个数据结构的, 不是特定对象的(核算法是). 数据结构 $D_0$为初始状态, 依次 执行 n 个操作 $op_i$进行势能转换 $D_i =op_i(D_{i-1}), i=1,2,\ldots,n$ , 各操作代价为 $c_i$ 势函数 $\Phi:D_i\rightarrow R$, $\Phi(D_i)$即为 $D_i$的势 则第 i 个操作的摊还代价 $$c_i'=c_i+\Phi(D_i)-\Phi(D_{i-1})$$ 则 $$\sum_{i=1}^{n}c_i'=\sum_{i=1}^{n}c_i+\Phi(D_n)-\Phi(D_0)$$ 如果定义一个势函数$\Phi, st \ \Phi(D_i)\geqslant\Phi(D_0)$, 则总摊还代价给出了实际代价的一个上界 可以简单地以 $D_0 \text{为参考状态}, then \ \Phi(D_0)=0$ 例如栈操作, 设空栈为 $D_0$, 势函数定义为栈的元素数 对于push, $ \Phi(D_i)-\Phi(D_0)=1$ 则 $c' = c +\Phi(D_i)-\Phi(D_0) = c+1 = 2$ 对于 multipop, $ \Phi(D_i)-\Phi(D_0)=- min(k,s)$ 则 $c' = c - min(k,s) = 0$ 同理 pop 的摊还代价也是0, 则总摊还代价的上界(最坏情况) 为 $O(n)$