''' mbinary ######################################################################### # File : vector_norm.py # Author: mbinary # Mail: zhuheqin1@gmail.com # Blog: https://mbinary.xyz # Github: https://github.com/mbinary # Created Time: 2018-10-02 21:14 # Description: ######################################################################### ''' from random import randint,random import numpy as np from operator import neg,and_ from functools import reduce class obj(): def __init__(self,data): self.data=np.array(data) def __add__(self,x): data = x.data if self.__class__ == x.__class__ else x return self.__class__(self.data + data) def __radd__(self,x): data = x.data if self.__class__ == x.__class__ else x return self.__class__(data +self.data) def __iadd__(self,x): data = x.data if self.__class__ == x.__class__ else x self.data += data def __mul__(self,x): data = x.data if self.__class__ == x.__class__ else x return self.__class__(self.data * data) def __imul__(self,x): data = x.data if self.__class__ == x.__class__ else x self.data *= data def __rmul__(self,x): data = x.data if self.__class__ == x.__class__ else x return self.__class__(data * self.data) def __neg__(self): return neg(self) def __abs__(self): return abs(self.data) ''' @property def data(self): return self.data @data.setter def data(self,s): self.data = s ''' def norm(self,n=0): '''the default is +oo norm''' absolute = abs(self.data) if n < 1 :return max(absolute) return (sum(absolute**n))**(1/n) def hasNorm(self): '''check norm's three necessary conditions: 1. not neg 2. homogenious (qici) 3. triangle inequlity there is much probably wrong ''' bl = reduce(and_,[self.norm(i)>=0 for i in range(3)]) if bl: n = randint(2,100) bl = reduce(and_,[n*(self.norm(i))==(n*self).norm(i) for i in range(3)]) if bl: another = self*randint(2,10)-randint(1,100) return reduce(and_,[(another+self).norm(i)<=another.norm(i)+self.norm(i) for i in range(3)]) return False class vector(obj): def __init__(self,arr): ''' arr: iterable''' self.data =np.array(arr) def innerProduct(self,x): return sum(self.data*x) def outerProduct(self,x): pass class matrix(obj): def __init__(self,s): '''s is a list of lists''' self.data=np.mat(s) self.T = None self. I = None ''' @property def T(self): if self.T==None:self.T = self.data.T return self.T @T.setter def T(self,s): self.T = s @property def I(self): if self.I == None: self.I = self.data.I return self.I @I.setter def I(self,s): self.I = s ''' def E(self,n=None): if n is None: n = self.data.shape[0] return np.eye(n) def norm(self,n=0): absolute = abs(self.data) if n < 1: # max of one row sum return max([sum(i) for i in absolute]) if n==1:return self.norm1() elif n==2:return self.norm2() def norm1(self): ''' max of sum of cols''' absolute = abs(self.data) return max(absolute.sum(axis=0)) def norm2(self): ''' max of sum of rows''' absolute = abs(self.data) return max(absolute.sum(axis=1)) def norm_f(self): return sum((self.data**2).sum(axis=1))**0.5 if __name__ =='__main__': v1 = vector([1,-2,3,4]) v2 = vector([0,2,0,5]) m1 = matrix([v1,v2,v2,v1]) print([v1.norm(i) for i in range(3)])