''' 回溯全空间搜索, 剪枝优化 设有n个任务由k个可并行工作的机器来完成,完成任务i需要时间为 。试设计一个算法找出完成这n个任务的最佳调度,使完成全部任务的时间最早。 ''' from time import time from functools import total_ordering @total_ordering class record: def __init__(self,nums=None): if nums is None: nums=[] self.nums=nums self.sum = sum(nums) def append(self,x): self.nums.append(x) self.sum+=x def pop(self): x = self.nums.pop() self.sum-=x return x def __repr__(self): return repr(self.nums) def __lt__(self,r): return self.sumcost: best= cost rst = [st.tolist() for st in lsts] else: for cur in set(lsts): if best>cur.sum+works[i]: cur.append(works[i]) backtrackSearch(i+1,lsts) cur.pop() def findInitial(i,lst): nonlocal best if i==n: cost = max(lst) if best>cost:best = cost else: mn = lst[0] idx = 0 visited=set() for j,cur in enumerate(lst): if cur not in visited: visited.add(cur) if mn>cur: mn = cur idx = j lst[idx]+=works[i] findInitial(i+1,lst) lst[idx]-=works[i] n = len(works) print() print('machine Num:',n) print('works :',works) rst = None works.sort(reverse=True) # key step best = sum(works[:n-k+1]) t = time() findInitial(0,[0]*k) # key step t1 = time()-t print('init solution: {} cost time {:.6f}s'.format(best,t1)) t = time() backtrackSearch(0,[record() for i in range(k)]) t2 = time()-t print('final solution: {} cost time {:.6f}s'.format(best,t2)) print('schedule plan:',rst) return best,rst if __name__=='__main__': from random import randint schedule([47,20,28,44,21,45,30,39,28,33],3) schedule([98,84,50,23,32,99,22,76,72,61,81,39,76,54,37],5) schedule([39,39,23,45,100,69,21,81,39,55,20,86,34,53,58,99,36,45,46],8) ''' machine Num: 19 works : [39, 39, 23, 45, 100, 69, 21, 81, 39, 55, 20, 86, 34, 53, 58, 99, 36, 45, 46] works 经过逆序排序 init solution: 135 cost time 0.000196s final solution: 126 cost time 0.022922s schedule plan: [[100, 21], [99, 23], [86, 39], [81, 45], [69, 53], [58, 45, 20], [55, 36, 34], [46, 39, 39]] works 没有经过排序 init solution: 168 cost time 0.000179s final solution: 126 cost time 10.646307s schedule plan: [[39, 86], [39, 34, 53], [23, 99], [45, 39, 36], [100, 20], [69, 55], [21, 58, 46], [81, 45]] '''