Add fib-heap and graph algorithm notes

This commit is contained in:
mbinary 2018-09-06 18:50:05 +08:00
parent 4ca26e05e6
commit 7e3583dbff
3 changed files with 1223 additions and 596 deletions

File diff suppressed because it is too large Load Diff

151
notes/fib-heap.md Normal file
View File

@ -0,0 +1,151 @@
![](https://upload-images.jianshu.io/upload_images/7130568-22531846a72b0d83.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
<a id="markdown-1-结构" name="1-结构"></a>
# 1. 结构
斐波那契堆是一系列具有最小堆序的有根树的集合, 同一代(层)结点由双向循环链表链接, **为了便于删除最小结点, 还需要维持链表为升序, 即nd<=nd.right(nd==nd.right时只有一个结点或为 None)**, 父子之间都有指向对方的指针.
结点有degree 属性, 记录孩子的个数, mark 属性用来标记(为了满足势函数, 达到摊还需求的)
还有一个最小值指针 H.min 指向最小根结点
![](https://upload-images.jianshu.io/upload_images/7130568-d4e8a85754fdbc14.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
<a id="markdown-2-势函数" name="2-势函数"></a>
# 2. 势函数
$\Phi(H) = t(H) + 2m(h)$
t 是根链表中树的数目,m(H) 表示被标记的结点数
最初没有结点
<a id="markdown-3-最大度数" name="3-最大度数"></a>
# 3. 最大度数
$D(n)\leqslant \lfloor lgn \rfloor$
![](https://upload-images.jianshu.io/upload_images/7130568-c9e0cd3be4e98c4b.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
<a id="markdown-4-操作" name="4-操作"></a>
# 4. 操作
<a id="markdown-41-创建一个斐波那契堆" name="41-创建一个斐波那契堆"></a>
## 4.1. 创建一个斐波那契堆
$O(1)$
<a id="markdown-42-插入一个结点" name="42-插入一个结点"></a>
## 4.2. 插入一个结点
```python
nd = new node
nd.prt = nd.chd = None
if H.min is None:
creat H with nd
H.min = nd
else:
insert nd into H's root list
if H.min<nd: H.min = nd
H.n +=1
```
$$
\Delta \Phi = \Delta t(H) + 2\Delta m(H) = 1+0 = 1
$$
摊还代价为$O(1)$
<a id="markdown-43-寻找最小结点" name="43-寻找最小结点"></a>
## 4.3. 寻找最小结点
直接用 H.min, $O(1)$
<a id="markdown-44-合并两个斐波那契堆" name="44-合并两个斐波那契堆"></a>
## 4.4. 合并两个斐波那契堆
```python
def union(H1,H2):
if H1.min ==None or (H1.min and H2.min and H1.min>H2.min):
H1.min = H2.min
link H2.rootList to H1.rootList
return H1
```
易知 $\Delta \Phi = 0$
<a id="markdown-45-抽取最小值" name="45-抽取最小值"></a>
## 4.5. 抽取最小值
抽取最小值, 一定是在根结点, 然后将此根结点的所有子树的根放在 根结点双向循环链表中, 之后还要进行**树的合并. 以使每个根结点的度不同,**
```python
def extract-min(H):
z = H.min
if z!=None:
for chd of z:
link chd to H.rootList
chd.prt = None
remove z from the rootList of H
if z==z.right:
H.min = None
else:
H.min = z.right
consolidate(H)
H.n -=1
return z
```
consolidate 函数使用一个 辅助数组degree来记录所有根结点(不超过lgn)对应的度数, degree[i] = nd 表示.有且只有一个结点 nd 的度数为 i.
```python
def consolidate(H):
initialize degree with None
for nd in H.rootList:
d = nd.degree
while degree[d] !=None:
nd2 = degree[d]
if nd2.degree < nd.degree:
nd2,nd = nd,nd2
make nd2 child of nd
nd.degree = d+1
nd.mark = False # to balace the potential
remove nd2 from H.rootList
degree[d] = None
d+=1
else: degree[d] = nd
for i in degree:
if i!=None:
link i to H.rootList
if H.min ==None: H.min = i
else if H.min>i: H.min = i
```
时间复杂度为$O(lgn)$ 即数组移动的长度, 而最多有 lgn个元素
<a id="markdown-46-关键字减值" name="46-关键字减值"></a>
## 4.6. 关键字减值
```python
def decrease-key(H,x,k):
if k>x.key: error
x.key = k
y=x.p
if y!=None and x.key < y.key:
cut(H,x,y)
cascading-cut(H,y)
if x.key < H.min.key:
H.min = x
def cut(H,x,y):
remove x from the child list of y, decrementing y.degree
add x to H.rootList
x.prt = None
x.mark = False
def cascading-cut(H,y):
z- y,prt
if z !=None:
if y.mark ==False:y.mark = True
else:
cut(H,y,z)
cascading-cut(H,z)
```
![](https://upload-images.jianshu.io/upload_images/7130568-0a29221f8a1fbfbb.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
<a id="markdown-47-删除结点" name="47-删除结点"></a>
## 4.7. 删除结点
decrease(H,nd, MIN)
<!-- TOC -->
- [1. 结构](#1-结构)
- [2. 势函数](#2-势函数)
- [3. 最大度数](#3-最大度数)
- [4. 操作](#4-操作)
- [4.1. 创建一个斐波那契堆](#41-创建一个斐波那契堆)
- [4.2. 插入一个结点](#42-插入一个结点)
- [4.3. 寻找最小结点](#43-寻找最小结点)
- [4.4. 合并两个斐波那契堆](#44-合并两个斐波那契堆)
- [4.5. 抽取最小值](#45-抽取最小值)
- [4.6. 关键字减值](#46-关键字减值)
- [4.7. 删除结点](#47-删除结点)
<!-- /TOC -->

464
notes/graph.md Normal file
View File

@ -0,0 +1,464 @@
<!-- TOC -->
- [1. 图](#1-图)
- [1.1. 概念](#11-概念)
- [1.1.1. 性质](#111-性质)
- [1.2. 图的表示](#12-图的表示)
- [1.3. 树](#13-树)
- [2. 搜索](#2-搜索)
- [2.1. BFS](#21-bfs)
- [2.2. DFS](#22-dfs)
- [2.2.1. DFS 的性质](#221-dfs-的性质)
- [2.3. 拓扑排序](#23-拓扑排序)
- [2.4. 强连通分量](#24-强连通分量)
- [3. 最小生成树](#3-最小生成树)
- [3.1. Kruskal 算法](#31-kruskal-算法)
- [3.2. Prim 算法](#32-prim-算法)
- [4. 单源最短路](#4-单源最短路)
- [4.1. 负权重的边](#41-负权重的边)
- [4.2. 初始化](#42-初始化)
- [4.3. 松弛操作](#43-松弛操作)
- [4.4. 有向无环图的单源最短路问题](#44-有向无环图的单源最短路问题)
- [4.5. Bellman-Ford 算法](#45-bellman-ford-算法)
- [4.6. Dijkstra 算法](#46-dijkstra-算法)
- [5. 所有结点对的最短路问题](#5-所有结点对的最短路问题)
- [5.1. 矩阵乘法](#51-矩阵乘法)
- [5.2. Floyd-Warshall 算法](#52-floyd-warshall-算法)
- [5.3. Johnson 算法](#53-johnson-算法)
- [6. 最大流](#6-最大流)
- [6.1. 定理](#61-定理)
- [6.2. 多个源,汇](#62-多个源汇)
- [6.3. Ford-Fulkerson 方法](#63-ford-fulkerson-方法)
- [6.3.1. 残存网络](#631-残存网络)
- [6.3.2. 增广路径](#632-增广路径)
- [6.3.3. 割](#633-割)
- [6.4. 基本的 Ford-Fulkerson算法](#64-基本的-ford-fulkerson算法)
- [6.5. TBD](#65-tbd)
- [7. 参考资料](#7-参考资料)
<!-- /TOC -->
<a id="markdown-1-图" name="1-图"></a>
# 1. 图
<a id="markdown-11-概念" name="11-概念"></a>
## 1.1. 概念
* 顶
* 顶点的度 d
* 边
* 相邻
* 重边
* 环
* 完全图: 所有顶都相邻
* 二分图: $V(G) = X \cup Y, X\cap Y = \varnothing$, X中, Y 中任两顶不相邻
* 轨道
* 圈
<a id="markdown-111-性质" name="111-性质"></a>
### 1.1.1. 性质
* $\sum_{v\in V} d(v) = 2|E|$
* G是二分图 $\Leftrightarrow$ G无奇圈
* 树是无圈连通图
* 树中, $|E| = |V| -1$
<a id="markdown-12-图的表示" name="12-图的表示"></a>
## 1.2. 图的表示
* 邻接矩阵
* 邻接链表
![](https://upload-images.jianshu.io/upload_images/7130568-57ce6db904992656.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
<a id="markdown-13-树" name="13-树"></a>
## 1.3. 树
无圈连通图, $E = V-1$, 详细见[树](https://mbinary.coding.me/tree.html),
<a id="markdown-2-搜索" name="2-搜索"></a>
# 2. 搜索
求图的生成树[^1]
<a id="markdown-21-bfs" name="21-bfs"></a>
## 2.1. BFS
```python
for v in V:
v.d = MAX
v.pre = None
v.isFind = False
root. isFind = True
root.d = 0
que = [root]
while que !=[]:
nd = que.pop(0)
for v in Adj(nd):
if not v.isFind :
v.d = nd.d+1
v.pre = nd
v.isFind = True
que.append(v)
```
时间复杂度 $O(V+E)$
<a id="markdown-22-dfs" name="22-dfs"></a>
## 2.2. DFS
$\Theta(V+E)$
```python
def dfs(G):
time = 0
for v in V:
v.pre = None
v.isFind = False
for v in V : # note this,
if not v.isFind:
dfsVisit(v)
def dfsVisit(G,u):
time =time+1
u.begin = time
u.isFind = True
for v in Adj(u):
if not v.isFind:
v.pre = u
dfsVisit(G,v)
time +=1
u.end = time
```
begin, end 分别是结点的发现时间与完成时间
<a id="markdown-221-dfs-的性质" name="221-dfs-的性质"></a>
### 2.2.1. DFS 的性质
* 其生成的前驱子图$G_{pre}$ 形成一个由多棵树构成的森林, 这是因为其与 dfsVisit 的递归调用树相对应
* 括号化结构
![](https://upload-images.jianshu.io/upload_images/7130568-ba62e68e5b883b6c.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
* 括号化定理:
考察两个结点的发现时间与结束时间的区间 [u,begin,u.end] 与 [v.begin,v.end]
* 如果两者没有交集, 则两个结点在两个不同的子树上(递归树)
* 如果 u 的区间包含在 v 的区间, 则 u 是v 的后代
<a id="markdown-23-拓扑排序" name="23-拓扑排序"></a>
## 2.3. 拓扑排序
利用 DFS, 结点的完成时间的逆序就是拓扑排序
同一个图可能有不同的拓扑排序
<a id="markdown-24-强连通分量" name="24-强连通分量"></a>
## 2.4. 强连通分量
在有向图中, 强连通分量中的结点互达
定义 $Grev$ 为 $G$ 中所有边反向后的图
将图分解成强连通分量的算法
在 Grev 上根据 G 中结点的拓扑排序来 dfsVisit, 即
```python
compute Grev
initalization
for v in topo-sort(G.V):
if not v.isFind: dfsVisit(Grev,v)
```
然后得到的DFS 森林(也是递归树森林)中每个树就是一个强连通分量
<a id="markdown-3-最小生成树" name="3-最小生成树"></a>
# 3. 最小生成树
利用了贪心算法,
<a id="markdown-31-kruskal-算法" name="31-kruskal-算法"></a>
## 3.1. Kruskal 算法
总体上, 从最开始 每个结点就是一颗树的森林中(不相交集合, 并查集), 逐渐添加不形成圈的(两个元素不再同一个集合),最小边权的边.
```python
edges=[]
for edge as u,v in sorted(G.E):
if find-set(u) != find-set(v):
edges.append(edge)
union(u,v)
return edges
```
如果并查集的实现采用了 按秩合并与路径压缩技巧, 则 find 与 union 的时间接近常数
所以时间复杂度在于排序边, 即 $O(ElgE)$, 而 $E<V^2$, 所以 $lgE = O(lgV)$, 时间复杂度为 $O(ElgV)$
<a id="markdown-32-prim-算法" name="32-prim-算法"></a>
## 3.2. Prim 算法
用了 BFS, 类似 Dijkstra 算法
从根结点开始 BFS, 一直保持成一颗树
```python
for v in V:
v.minAdjEdge = MAX
v.pre = None
root.minAdjEdge = 0
que = priority-queue (G.V) # sort by minAdjEdge
while not que.isempty():
u = que.extractMin()
for v in Adj(u):
if v in que and v.minAdjEdge>w(u,v):
v.pre = u
v.minAdjEdge = w(u,v)
```
* 建堆 $O(V)$ `//note it's v, not vlgv`
* 主循环中
* extractMin: $O(VlgV)$
* in 操作 可以另设标志位, 在常数时间完成, 总共 $O(E)$
* 设置结点的 minAdjEdge, 需要$O(lgv)$, 循环 E 次,则 总共$O(ElgV)$
综上, 时间复杂度为$O(ElgV)$
如果使用的是 [斐波那契堆](https://mbinary.coding.me/fib-heap.html), 则可改进到 $O(E+VlgV)$
<a id="markdown-4-单源最短路" name="4-单源最短路"></a>
# 4. 单源最短路
求一个结点到其他结点的最短路径, 可以用 Bellman-ford算法, 或者 Dijkstra算法.
定义两个结点u,v间的最短路
$$
\delta(u,v) = \begin{cases}
min(w(path)),\quad u\xrightarrow{path} v\\
MAX, \quad u\nrightarrow v
\end{cases}
$$
问题的变体
* 单目的地最短路问题: 可以将所有边反向转换成求单源最短路问题
* 单结点对的最短路径
* 所有结点对最短路路径
<a id="markdown-41-负权重的边" name="41-负权重的边"></a>
## 4.1. 负权重的边
Dijkstra 算法不能处理, 只能用 Bellman-Ford 算法,
而且如果有负值圈, 则没有最短路, bellman-ford算法也可以检测出来
<a id="markdown-42-初始化" name="42-初始化"></a>
## 4.2. 初始化
```python
def initialaize(G,s):
for v in G.V:
v.pre = None
v.distance = MAX
s.distance = 0
```
<a id="markdown-43-松弛操作" name="43-松弛操作"></a>
## 4.3. 松弛操作
```python
def relax(u,v,w):
if v.distance > u.distance + w:
v.distance = u.distance + w:
v.pre = u
```
性质
* 三角不等式: $\delta(s,v) \leqslant \delta(s,u) + w(u,v)$
* 上界: $v.distance \geqslant \delta(s,v)$
* 收敛: 对于某些结点u,v 如果s->...->u->v是图G中的一条最短路径并且在对边进行松弛前任意时间有 $u.distance=\delta(s,u)$则在之后的所有时间有 $v.distance=\delta(s,v)$
* 路径松弛性质: 如果$p=v_0 v_1 \ldots v_k$是从源结点下v0到结点vk的一条最短路径并且对p中的边所进行松弛的次序为$(v_0,v_1),(v_1,v_2), \ldots ,(v_{k-1},v_k)$, 则 $v_k.distance = \delta(s,v_k)$
该性质的成立与任何其他的松弛操作无关即使这些松弛操作是与对p上的边所进行的松弛操作穿插进行的。
证明
![](https://upload-images.jianshu.io/upload_images/7130568-424a6929bd389825.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
<a id="markdown-44-有向无环图的单源最短路问题" name="44-有向无环图的单源最短路问题"></a>
## 4.4. 有向无环图的单源最短路问题
```python
def dag-shortest-path(G,s):
initialize(G,s)
for u in topo-sort(G.V):
for v in Adj(v):
relax(u,v,w(u,v))
```
<a id="markdown-45-bellman-ford-算法" name="45-bellman-ford-算法"></a>
## 4.5. Bellman-Ford 算法
```python
def bellman-ford(G,s):
initialize(G,s)
for ct in range(|V|-1): # v-1times
for u,v as edge in E:
relax(u,v,w(u,v))
for u,v as edge in E:
if v.distance > u.distance + w(u,v):
return False
return True
```
第一个 for 循环就是进行松弛操作, 最后结果已经存储在 结点的distance 和 pre 属性中了, 第二个 for 循环利用三角不等式检查有不有负值圈.
下面是证明该算法的正确性![](https://upload-images.jianshu.io/upload_images/7130568-f84e00ac35aadc81.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
<a id="markdown-46-dijkstra-算法" name="46-dijkstra-算法"></a>
## 4.6. Dijkstra 算法
```python
def dijkstra(G,s):
initialize(G,s)
paths=[]
q = priority-queue(G.V) # sort by distance
while not q.empty():
u = q.extract-min()
paths.append(u)
for v in Adj(u):
relax(u,v,w(u,v))
```
<a id="markdown-5-所有结点对的最短路问题" name="5-所有结点对的最短路问题"></a>
# 5. 所有结点对的最短路问题
<a id="markdown-51-矩阵乘法" name="51-矩阵乘法"></a>
## 5.1. 矩阵乘法
使用动态规划算法, 可以得到最短路径的结构
设 $l_{ij}^{(m)}$为从结点i 到结点 j 的至多包含 m 条边的任意路径的最小权重,当m = 0, 此时i=j, 则 为0,
可以得到递归定义
$$
l_{ij}^{(m)} =\min( l_{ij}^{(m-1)}, \min_{1\leqslant k\leqslant n}( l_{ik}^{(m-1)}+w_{kj})) = \min_{1\leqslant k\leqslant n}( l_{ik}^{(m-1)}+w_{kj}))
$$
由于是简单路径, 则包含的边最多为 |V|-1 条, 所以
$$
\delta(i,j) = l_{ij}^{(|V|-1)} = l_{ij}^{(|V|)} =l_{ij}^{(|V| + 1)}= ...
$$
所以客户处自底向上计算, 如下
输入权值矩阵 $W(w_{ij})), L^{(m-1)}$,输出$ L^{(m)}$, 其中 $L^{(1)} = W$,
```python
n = L.rows
L' = new matrix(nxn)
for i in range(n):
for j in range(n):
l'[i][j] = MAX
for k in range(n):
l'[i][j] = min(l'[i][j], l[i][k]+w[k][j])
return L'
```
可以看出该算法与矩阵乘法的关系
$L^{(m)} = W^m$,
所以可以直接计算乘法, 每次计算一个乘积是 $O(V^3)$, 计算 V 次, 所以总体 $O(V^4)$, 使用矩阵快速幂可以将时间复杂度降低为$O(V^3lgV)$
```python
def f(W):
L = W
i = 1
while i<W.rows:
L = L*L
i*=2
return L
```
<a id="markdown-52-floyd-warshall-算法" name="52-floyd-warshall-算法"></a>
## 5.2. Floyd-Warshall 算法
同样要求可以存在负权边, 但不能有负值圈. 用动态规划算法:
设 $ d_{ij}^{(k)}$ 为 从 i 到 j 所有中间结点来自集合 ${\{1,2,\ldots,k\}}$ 的一条最短路径的权重. 则有
$$
d_{ij}^{(k)} = \begin{cases}
w_{ij},\quad k=0\\
min(d_{ij}^{(k-1)},d_{ik}^{(k-1)}+d_{kj}^{(k-1)}),\quad k\geqslant 1
\end{cases}
$$
而且为了找出路径, 需要记录前驱结点, 定义如下前驱矩阵 $\Pi$, 设 $ \pi_{ij}^{(k)}$ 为 从 i 到 j 所有中间结点来自集合 ${\{1,2,\ldots,k\}}$ 的最短路径上 j 的前驱结点
$$
\pi_{ij}^{(0)} = \begin{cases}
nil,\quad i=j \ or \ w_{ij}=MAX\\
i, \quad i\neq j and \ w_{ij}<MAX
\end{cases}
$$
对 $k\geqslant 1$
$$
\pi_{ij}^{(k)} = \begin{cases}
\pi_{ij}^{(k-1)} ,\quad d_{ij}^{(k-1)}\leqslant d_{ik}^{(k-1)}+d_{kj}^{(k-1)}\\
\pi_{kj}^{(k-1)} ,\quad otherwise
\end{cases}
$$
由此得出此算法
```python
def floyd-warshall(w):
n = len(w)
d= w
initial pre # 0
for k in range(n):
d2 = d.copy()
pre2 = pre.copy()
for j in range(n):
for i in range(v)
if d[i][j] > d[i][k]+d[k][j]:
d2[i][j] = min(d[i][j], d[i][k]+d[k][j])
pre2[i][j] = pre[k][j]
pre = pre2
d = d2
return d,pre
```
<a id="markdown-53-johnson-算法" name="53-johnson-算法"></a>
## 5.3. Johnson 算法
思路是通过重新赋予权重, 将图中负权边转换为正权,然后就可以用 dijkstra 算法(要求是正值边)来计算一个结点到其他所有结点的, 然后对所有结点用dijkstra
1. 首先构造一个新图 G'
先将G拷贝到G', 再添加一个新结点 s, 添加 G.V条边, s 到G中顶点的, 权赋值为 0
2. 用 Bellman-Ford 算法检查是否有负值圈, 如果没有, 同时求出 $\delta(s,v) 记为 h(v)$
3. 求新的非负值权, w'(u,v) = w(u,v)+h(u)-h(v)
4. 对所有结点在 新的权矩阵w'上 用 Dijkstra 算法
![image.png](https://upload-images.jianshu.io/upload_images/7130568-6c2146ad64d692f3.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
```python
JOHNSON (G, u)
s = newNode
G' = G.copy()
G'.addNode(s)
for v in G.V: G'.addArc(s,v,w=0)
if BELLMAN-FORD(G' , w, s) ==FALSE
error "the input graph contains a negative-weight cycle"
for v in G'.V:
# computed by the bellman-ford algorithm, delta(s,v) is the shortest distance from s to v
h(v) = delta(s,v)
for edge(u,v) in G'.E:
w' = w(u,v)+h(u)-h(v)
d = matrix(n,n)
for u in G:
dijkstra(G,w',u) # compute delta' for all v in G.V
for v in G.V:
d[u][v] = delta'(u,v) + h(v)-h(u)
return d
```
<a id="markdown-6-最大流" name="6-最大流"></a>
# 6. 最大流
G 是弱连通严格有向加权图, s为源, t 为汇, 每条边e容量 c(e), 由此定义了网络N(G,s,t,c(e)),
* 流函数 $f(e):E \rightarrow R$
$$
\begin{aligned}
(1)\quad & 0\leqslant f(e) \leqslant c(e),\quad e \in E\\
(2)\quad & \sum_{e\in \alpha(v)} f(e)= \sum_{e\in \beta(v)}f(e),\quad v \in V-\{s,t\}
\end{aligned}
$$
其中 $\alpha(v)$ 是以 v 为头的边集, $\beta(v)$是以 v 为尾的边集
* 流量: $F = \sum_{e\in \alpha(t)} f(e)- \sum_{e\in -\beta(t)}f(e),$
* 截$(S,\overline S)$: $S\subset V,s\in S, t\in \overline S =V-S$
* 截量$C(S) = \sum_{e\in(S,\overline S)}c(e)$
<a id="markdown-61-定理" name="61-定理"></a>
## 6.1. 定理
参考 图论[^2]
* 对于任一截$(S,\overline S)$, 有 $F = \sum_{e\in (S,\overline S)} f(e)- \sum_{e\in(\overline S,S)}f(e),$
![prove](https://upload-images.jianshu.io/upload_images/7130568-19bf6cc3c7d6ce06.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
* $F\leqslant C(S)$
证明: 由上面定理
$$F = \sum_{e\in (S,\overline S)} f(e)- \sum_{e\in(\overline S,S)}f(e),$$
而 $0\leqslant f(e) \leqslant c(e)$, 则
$$F\leqslant \sum_{e\in (S,\overline S)} f(e) \leqslant \sum_{e\in (S,\overline S)} c(e) = C(S) $$
* 最大流,最小截: 若$F= C(S) $, 则F'是最大流量, C(S) 是最小截量
<a id="markdown-62-多个源汇" name="62-多个源汇"></a>
## 6.2. 多个源,汇
可以新增一个总的源,一个总的汇,
![](https://upload-images.jianshu.io/upload_images/7130568-3e9e87fdf9655883.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
<a id="markdown-63-ford-fulkerson-方法" name="63-ford-fulkerson-方法"></a>
## 6.3. Ford-Fulkerson 方法
由于其实现可以有不同的运行时间, 所以称其为方法, 而不是算法.
思路是 循环增加流的值, 在一个关联的"残存网络" 中寻找一条"增广路径", 然后对这些边进行修改流量. 重复直至残存网络上不再存在增高路径为止.
```python
def ford-fulkerson(G,s,t):
initialize flow f to 0
while exists an augmenting path p in residual network Gf:
augment flow f along p
return f
```
<a id="markdown-631-残存网络" name="631-残存网络"></a>
### 6.3.1. 残存网络
![](https://upload-images.jianshu.io/upload_images/7130568-c74a571b9121dbbf.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
<a id="markdown-632-增广路径" name="632-增广路径"></a>
### 6.3.2. 增广路径
![](https://upload-images.jianshu.io/upload_images/7130568-b9e841cfa4d04b57.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
<a id="markdown-633-割" name="633-割"></a>
### 6.3.3. 割
![](https://upload-images.jianshu.io/upload_images/7130568-74b065e86eb285b7.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
<a id="markdown-64-基本的-ford-fulkerson算法" name="64-基本的-ford-fulkerson算法"></a>
## 6.4. 基本的 Ford-Fulkerson算法
```python
def ford-fulkerson(G,s,t):
for edge in G.E: edge.f = 0
while exists path p:s->t in Gf:
cf(p) = min{cf(u,v):(u,v) is in p}
for edge in p:
if edge in E:
edge.f +=cf(p)
else: reverse_edge.f -=cf(p)
```
<a id="markdown-65-tbd" name="65-tbd"></a>
## 6.5. TBD
<a id="markdown-7-参考资料" name="7-参考资料"></a>
# 7. 参考资料
[^1]: 算法导论
[^2]: 图论, 王树禾