✌️Build a red black tree successfully

master
mbinary 2018-07-14 17:55:01 +08:00
parent 64c62a0ff8
commit 52c93f95ce
2 changed files with 883 additions and 136 deletions

View File

@ -22,7 +22,7 @@ class node:
def __lt__(self,nd):
return self.val < nd.val
def __eq__(self,nd):
return nd is not None and self.val==nd.val
return nd is not None and self.val == nd.val
def setChild(self,nd,isLeft = True):
if isLeft: self.left = nd
else: self.right = nd
@ -37,29 +37,11 @@ class node:
def __repr__(self):
return f'node({self.val},isBlack={self.isBlack})'
class redBlackTree:
def __init__(self):
def __init__(self,unique=False):
'''if unique is True, all node'vals are unique, else there may be equal vals'''
self.root = None
def getParent(self,val):
if isinstance(val,node):val = val.val
if self.root.val == val:return None
nd = self.root
while nd:
if nd.val>val and nd.left is not None:
if nd.left.val == val: return nd
else: nd = nd.left
elif nd.val<val and nd.right is not None:
if nd.right.val == val: return nd
else: nd = nd.right
def find(self,val):
if isinstance(val,node):val = val.val
nd = self.root
while nd:
if nd.val ==val:
return nd
elif nd.val>val:
nd = nd.left
else:
nd = nd.right
self.unique = unique
@staticmethod
def checkBlack(nd):
return nd is None or nd.isBlack
@ -69,39 +51,85 @@ class redBlackTree:
if isBlack is None or isBlack:
nd.isBlack = True
else:nd.isBlack = False
def insert(self,val):
if isinstance(val,node):val = val.val
def _insert(root,nd):
'''return parent'''
while root:
if root == nd:return None
elif root>nd:
if root.left :
root=root.left
else:
root.left = nd
return root
else:
if root.right:
root = root.right
else:
root.right = nd
return root
# insert part
nd = node(val)
def sort(self,reverse = False):
''' return a generator of sorted data'''
def inOrder(root):
if root is None:return
if reverse:
yield from inOrder(root.right)
else:
yield from inOrder(root.left)
yield root
if reverse:
yield from inOrder(root.left)
else:
yield from inOrder(root.right)
yield from inOrder(self.root)
def getParent(self,chd):
'''note that use is to find real node when different nodes have euqiv val'''
if self.root is chd:return None
nd = self.root
while nd:
if nd>chd and nd.left is not None:
if nd.left is chd: return nd
else: nd = nd.left
elif nd<chd and nd.right is not None:
if nd.right is chd: return nd
else: nd = nd.right
def find(self,val):
nd = self.root
while nd:
if nd.val ==val:
return nd
elif nd.val>val:
nd = nd.left
else:
nd = nd.right
def getSuccessor(self,nd):
if nd:
if nd.right:
nd = nd.right
while nd.left:
nd = nd.left
return nd
else:return self.getParent(nd)
def transferParent(self,origin,new):
if origin is self.root:
self.root = new
else:
prt = self.getParent(origin)
prt.setChild(new, prt.left is origin)
def insert(self,nd):
if not isinstance(nd,node):
nd = node(nd)
elif nd.isBlack: nd.isBlack = False
if self.root is None:
self.root = nd
self.setBlack(self.root,True)
return
parent = _insert(self.root,nd)
if parent is None: return
if not parent.isBlack: self.fixUpInsert(parent,nd)
self.root.isBlack = True
else:
parent = self.root
while parent:
if parent == nd : return None
if parent>nd:
if parent.left :
parent = parent.left
else:
parent.left = nd
break
else:
if parent.right:
parent = parent.right
else:
parent.right = nd
break
self.fixUpInsert(parent,nd)
def fixUpInsert(self,parent,nd):
''' adjust color and level, there are two red nodes: the new one and its parent'''
while not self.checkBlack(parent):
grand = self.getParent(parent)
isLeftPrt = grand.left == parent
isLeftPrt = grand.left is parent
uncle = grand.getChild(not isLeftPrt)
if not self.checkBlack(uncle):
# case 1: new node's uncle is red
@ -112,7 +140,7 @@ class redBlackTree:
parent = self.getParent(nd)
else:
# case 2: new node's uncle is black(including nil leaf)
isLeftNode = parent.left==nd
isLeftNode = parent.left is nd
if isLeftNode ^ isLeftPrt:
# case 2.1 the new node is inserted in left-right or right-left form
# grand grand
@ -130,105 +158,92 @@ class redBlackTree:
parent.setChild(grand,not isLeftPrt)
self.setBlack(grand, False)
self.setBlack(parent, True)
self.transferParent(grand,parent)
self.setBlack(self.root,True)
def sort(self,reverse = False):
''' return a generator of sorted data'''
def inOrder(root):
if root is None:return
if reverse:
yield from inOrder(root.right)
else:
yield from inOrder(root.left)
yield root
if reverse:
yield from inOrder(root.left)
else:
yield from inOrder(root.right)
yield from inOrder(self.root)
def getSuccessor(self,val):
if isinstance(val,node):val = val.val
def _inOrder(root):
if root is None:return
if root.val>= val:yield from _inOrder(root.left)
yield root
yield from _inOrder(root.right)
gen = _inOrder(self.root)
for i in gen:
if i.val==val:
try: return gen.__next__()
except:return None
def delete(self,val):
# delete node in a binary search tree
if isinstance(val,node):val = val.val
nd = self.find(val)
def copyNode(self,src,des):
'''when deleting a node which has two kids,
copy its succesor's data to his position
data exclude left, right , isBlack
'''
des.val = src.val
def delete(self,nd):
'''delete node in a binary search tree'''
if not isinstance(nd,node):
nd = self.find(nd)
if nd is None: return
y = None
if nd.left and nd.right:
y= self.getSuccessor(val)
y= self.getSuccessor(nd)
else:
y = nd
py = self.getParent(y.val)
py = self.getParent(y)
x = y.left if y.left else y.right
if py is None:
self.root = x
elif y==py.left:
elif y is py.left:
py.left = x
else:
py.right = x
if y != nd:
nd.val = y.val
self.copyNode(y,nd)
# adjust colors and rotate
if self.checkBlack(y): self.fixUpDel(py,x)
def fixUpDel(self,prt,chd):
if self.root == chd or not self.checkBlack(chd):
self.setBlack(chd, True)
return
isLeft = prt.left == chd
brother = prt.getChild(not isLeft)
if self.checkBlack(brother):
# case 1: brother is black
lb = self.checkBlack(brother.left)
rb = self.checkBlack(brother.right)
if lb and rb:
# case 1.1: brother is black and two kids are black
''' adjust colors and rotate '''
while self.root != chd and self.checkBlack(chd):
isLeft = prt.left is chd
brother = prt.getChild(not isLeft)
# brother is black
lb = self.checkBlack(brother.getChild(isLeft))
rb = self.checkBlack(brother.getChild(not isLeft))
if not self.checkBlack(brother):
# case 1: brother is red. converted to case 2,3,4
# prt (isLeft) rotate
prt.setChild(brother.getChild(isLeft), not isLeft)
brother.setChild(prt, isLeft)
self.setBlack(prt,False)
self.setBlack(brother,True)
self.transferParent(prt,brother)
elif lb and rb:
# case 2: brother is black and two kids are black.
# conveted to the begin case
self.setBlack(brother,False)
chd = prt
elif lb or rb:
# case 1.2: brother is black and two kids's colors differ
if self.checkBlack(brother.getChild(not isLeft)):
prt = self.getParent(chd)
else:
if rb:
# case 3: brother is black and left kid is red and right child is black
# uncle's son is nephew, and niece for uncle's daughter
nephew = brother.getChild(isLeft),
print(nephew)
nephew = brother.getChild(isLeft)
self.setBlack(nephew,True)
self.setBlack(brother,False)
# brother right rotate
# brother (not isLeft) rotate
prt.setChild(nephew,not isLeft)
brother.setChild(nephew.getChild(not isLeft),isLeft)
nephew.setChild(brother, not isLeft)
brother = prt.right
brother = nephew
# case 1.3: brother is black and two kids are red
# case 4: brother is black and right child is red
brother.isBlack = prt.isBlack
self.setBlack(prt,True)
self.setBlack(brother.right,True)
self.setBlack(brother.getChild(not isLeft),True)
# prt left rotate
prt.setChild(brother.getChild(isLeft),not isLeft)
brother.setChild(prt,isLeft)
self.transferParent(prt,brother)
chd = self.root
else:
# case 2: brother is red
prt.setChild(brother.getChild(isLeft), not isLeft)
brother.setChild(prt, isLeft)
self.setBlack(prt,False)
self.setBlack(brother,True)
self.setBlack(chd,True)
def display(self):
def getHeight(nd):
if nd is None:return 0
@ -238,25 +253,39 @@ class redBlackTree:
lst = deque([root])
level = []
h = getHeight(root)
lv = 0
ct = 0
while lv<=h:
ct = lv = 0
while 1:
ct+=1
nd = lst.popleft()
if ct >= 2**lv:
lv+=1
if lv>h:break
level.append([])
level[-1].append(str(nd))
if nd is not None:
lst.append(nd.left)
lst.append(nd.right)
lst += [nd.left,nd.right]
else:
lst.append(None)
lst.append(None)
lst +=[None,None]
return level
def addBlank(lines):
width = 5
sep = ' '*width
n = len(lines)
for i,oneline in enumerate(lines):
k = 2**(n-i) -1
new = [sep*((k-1)//2)]
for s in oneline:
new.append(s.ljust(width))
new.append(sep*k)
lines[i] = new
return lines
lines = levelVisit(self.root)
print('-'*5+ 'level visit' + '-'*5)
return '\n'.join([' '.join(line) for line in lines])
lines = addBlank(lines)
li = [''.join(line) for line in lines]
li.insert(0,'red-black-tree'.rjust(48,'-') + '-'*33)
li.append('end'.rjust(42,'-')+'-'*39+'\n')
return '\n'.join(li)
def __str__(self):
return self.display()
@ -270,44 +299,41 @@ def genNum(n =10):
if d not in nums:
nums.append(d)
break
#nums = [3,4,2,0,1,6]
return nums
def buildTree(n=10,nums=None,visitor=None):
if nums is None: nums = genNum(n)
if nums is None or nums ==[]: nums = genNum(n)
rbtree = redBlackTree()
print(f'build a red-black tree using {nums}')
for i in nums:
rbtree.insert(i)
if visitor:
visitor(rbtree)
rbtree.insert(i)
return rbtree
return rbtree,nums
def testInsert():
def visitor(t):
print(t)
nums = [66, 14, 7, 2, 52, 96, 63, 51, 16, 53]
rbtree = buildTree(nums = nums,visitor = visitor)
rbtree,nums = buildTree(visitor = visitor)
print('-'*5+ 'in-order visit' + '-'*5)
for i,j in enumerate(rbtree.sort()):
print(f'{i+1}: {j}')
def testSuc():
rbtree = buildTree()
rbtree,nums = buildTree()
for i in rbtree.sort():
print(f'{i}\'s suc is {rbtree.getSuccessor(i)}')
def testDelete():
#nums = [56, 89, 31, 29, 24, 8, 62, 96, 20, 75] #tuple
nums = [66, 14, 7, 2, 52, 96, 63, 51, 16, 53]
rbtree = buildTree(nums = nums)
#nums = [2,3,3,2,6,7,2,1]
nums = None
rbtree,nums = buildTree(nums = nums)
print(rbtree)
shuffle(nums)
for i in nums:
print(f'deleting {i}')
rbtree.delete(i)
print(rbtree)
if __name__=='__main__':
testInsert()
#testDelete()
#testSuc()
#testInsert()
testDelete()

721
notes/red-black-tree.md Normal file
View File

@ -0,0 +1,721 @@
---
title: 『数据结构』红黑树(red-black tree)
date: 2018-07-12 19:58
categories: 数据结构与算法
tags: [数据结构,红黑树]
keywords:
mathjax: true
description:
<!-- TOC -->
- [1. 定义与性质](#1-定义与性质)
- [1.1. 数据域](#11-数据域)
- [1.2. 红黑性质](#12-红黑性质)
- [1.3. 黑高度](#13-黑高度)
- [2. 旋转](#2-旋转)
- [3. 插入](#3-插入)
- [3.1. 二叉查找树的插入](#31-二叉查找树的插入)
- [3.2. 颜色调整与旋转](#32-颜色调整与旋转)
- [3.2.1. 问题](#321-问题)
- [3.2.2. 情况](#322-情况)
- [3.2.2.1. case1: x 的叔叔是红色的](#3221-case1--x-的叔叔是红色的)
- [3.2.2.2. case2: x 的叔叔是黑色, x,p(x), p(p(x)),方向为 left-right 或者 right-left](#3222-case2-x-的叔叔是黑色-xpx-ppx方向为-left-right-或者-right-left)
- [3.2.2.3. case3: x 的叔叔是黑色, x,p(x), p(p(x)),方向为 left-left 或者 right-right](#3223-case3-x-的叔叔是黑色-xpx-ppx方向为-left-left-或者-right-right)
- [3.2.3. 总体解决方案](#323-总体解决方案)
- [4. 删除](#4-删除)
- [4.1. 二叉查找树删除结点](#41-二叉查找树删除结点)
- [4.2. 调整颜色与旋转](#42-调整颜色与旋转)
- [5. 数据结构的扩张](#5-数据结构的扩张)
- [5.1. 平衡树的扩张](#51-平衡树的扩张)
- [6. python 代码](#6-python-代码)
- [7. 参考](#7-参考)
<!-- /TOC -->
<a id="markdown-1-定义与性质" name="1-定义与性质"></a>
# 1. 定义与性质
红黑树是一种平衡的二叉查找树
<a id="markdown-11-数据域" name="11-数据域"></a>
## 1.1. 数据域
每个结点有 5 个数据域
* color: red or black
* key: keyword
* left: pointer to left child
* right:pointer to right child
* p: pointer to nil leaf
<a id="markdown-12-红黑性质" name="12-红黑性质"></a>
## 1.2. 红黑性质
满足下面的 `红黑性质` 的二叉查找树就是红黑树:
* 每个结点或是红色或是黑色
* 根是黑
* nil leaf 是 黑
* 红结点的孩子是黑
* 从每个结点出发,通过子孙到达叶子结点的各条路径上 黑结点数相等
如,叶子结点 是 nil, 即不存储任何东西, 为了编程方便,相对的,存有数据的结点称为内结点
![](https://upload-images.jianshu.io/upload_images/7130568-95927d3ca6cc524d.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
为了节省空间, 可以如下实现, 只需要一个 nil 结点
![nil leaf](https://upload-images.jianshu.io/upload_images/7130568-f8dbd241fbc55ee5.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
<a id="markdown-13-黑高度" name="13-黑高度"></a>
## 1.3. 黑高度
从某个结点 x 到叶结点的黑色结点数,称为此结点的黑高度, 记为 $h_b(x)$
树的黑高度是根的黑高度
>1. 以 x 为 根的子树至少包含 $2^{h_b(x)}-1$个结点
>2. 一颗有 n 个内结点的红黑树高度至多为$2lg(n+1)$
可用归纳法证明1
证明 2:
设树高 h
由红黑性质4, 根结点到叶子路径上的黑结点数至少 $\frac{h}{2}$,即 $h_b(root)\geqslant \frac{h}{2}$
再由1,
$$n \geqslant 2^{h_b(x)} -1 \geqslant 2^{\frac{h}{2}} -1$$
即 $ h\leqslant 2lg(n+1)$
<a id="markdown-2-旋转" name="2-旋转"></a>
# 2. 旋转
由于上面证明的红黑树高为 $O(logn)$,红黑树的 insert, delete, search 等操作都是, $O(logn)$.
进行了 insert, delete 后可能破坏红黑性质, 可以通过旋转来保持.
下面是对结点 x 进行 左旋与右旋.
注意进行左旋时, 右孩子不是 nil(要用来作为旋转后 x 的双亲), 同理 右旋的结点的左孩子不是nil
![左旋与右旋](https://upload-images.jianshu.io/upload_images/7130568-d31b65b547ff2e7c.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
总结起来就是: 父亲旋转,顺时针就是右旋,逆时针就是左旋, 旋转的结果是儿子成为原来父亲的新父亲, 即旋转的结点下降一层, 它的一个儿子上升一层.
<a id="markdown-3-插入" name="3-插入"></a>
# 3. 插入
插入的过程:
* 先同二叉查找树那样插入, 做为叶子(不为空)
* 然后将新结点的 左右孩子设为 nil , 颜色设为红色
* 最后再进行颜色调整以及旋转(维持红黑性质)
这是算法导论[^1]上的算法
```python
RB-INSERT(T, z)
y ← nil[T] // 新建节点“y”将y设为空节点。
x ← root[T] // 设“红黑树T”的根节点为“x”
while x ≠ nil[T] // 找出要插入的节点“z”在二叉树T中的位置“y”
do y ← x
if key[z] < key[x]
then x ← left[x]
else x ← right[x]
p[z] ← y // 设置 “z的父亲” 为 “y”
if y = nil[T]
then root[T] ← z // 情况1若y是空节点则将z设为根
else if key[z] < key[y]
then left[y] ← z // 情况2若“z所包含的值” < “y所包含的值”则将z设为“y的左孩子”
else right[y] ← z // 情况3(“z所包含的值” >= “y所包含的值”)将z设为“y的右孩子”
left[z] ← nil[T] // z的左孩子设为空
right[z] ← nil[T] // z的右孩子设为空。至此已经完成将“节点z插入到二叉树”中了。
color[z] ← RED // 将z着色为“红色”
RB-INSERT-FIXUP(T, z) // 通过RB-INSERT-FIXUP对红黑树的节点进行颜色修改以及旋转让树T仍然是一颗红黑树
```
<a id="markdown-31-二叉查找树的插入" name="31-二叉查找树的插入"></a>
## 3.1. 二叉查找树的插入
可以用python 实现如下
```python
def insert(self,nd):
if not isinstance(nd,node):
nd = node(nd)
elif nd.isBlack: nd.isBlack = False
if self.root is None:
self.root = nd
self.root.isBlack = True
else:
parent = self.root
while parent:
if parent == nd : return None
if parent>nd:
if parent.left :
parent = parent.left
else:
parent.left = nd
break
else:
if parent.right:
parent = parent.right
else:
parent.right = nd
break
self.fixUpInsert(parent,nd)
```
<a id="markdown-32-颜色调整与旋转" name="32-颜色调整与旋转"></a>
## 3.2. 颜色调整与旋转
<a id="markdown-321-问题" name="321-问题"></a>
### 3.2.1. 问题
在插入后,可以发现后破坏的红黑性质只有以下两条(且互斥)
1. root 是红 (这可以直接将root 颜色设为黑调整)
2. 红结点的孩子是黑
所以下面介绍如何保持 红结点的孩子是黑 , 即插入结点的双亲结点是红的情况.
下面记 结点 x 的 双亲为 p(x), 新插入的结点为 x, 记 uncle 结点 为 u(x)
由于 p(x) 是红色, 而根结点是黑色, 所以 p(x)不是根, p(p(x))存在
<a id="markdown-322-情况" name="322-情况"></a>
### 3.2.2. 情况
有如下三种情况
![](https://upload-images.jianshu.io/upload_images/7130568-04e77807cb660277.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
每种情况的解决方案如下
<a id="markdown-3221-case1--x-的叔叔是红色的" name="3221-case1--x-的叔叔是红色的"></a>
#### 3.2.2.1. case1: x 的叔叔是红色的
这里只需改变颜色, 将 p(x)变为 黑, p(p(x))变为红, u(x) 变为黑色 (x为右孩子同样)
![](https://upload-images.jianshu.io/upload_images/7130568-a884903d8fed7e7b.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
<a id="markdown-3222-case2-x-的叔叔是黑色-xpx-ppx方向为-left-right-或者-right-left" name="3222-case2-x-的叔叔是黑色-xpx-ppx方向为-left-right-或者-right-left"></a>
#### 3.2.2.2. case2: x 的叔叔是黑色, x,p(x), p(p(x)),方向为 left-right 或者 right-left
即 x,p(x), p(p(x)) 成折线状
<a id="markdown-3223-case3-x-的叔叔是黑色-xpx-ppx方向为-left-left-或者-right-right" name="3223-case3-x-的叔叔是黑色-xpx-ppx方向为-left-left-或者-right-right"></a>
#### 3.2.2.3. case3: x 的叔叔是黑色, x,p(x), p(p(x)),方向为 left-left 或者 right-right
即 x,p(x), p(p(x)) 成直线状
![](https://upload-images.jianshu.io/upload_images/7130568-4b86ce66ddff0e08.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
当 x 为右孩子时, 通过旋转变成p(x) 的双亲, 然后相当于 新插入 p(x)作为左孩子, 再进行转换.
即将新结点的双亲向上一层旋转,颜色变为黑色, 而新节点的祖父向下一层, 颜色变为红色
<a id="markdown-323-总体解决方案" name="323-总体解决方案"></a>
### 3.2.3. 总体解决方案
我最开始也没有弄清楚, 有点绕晕的感觉, 后来仔细读了书上伪代码, 然后才发现就是一个状态机, 画出来就一目了然了.
![](https://upload-images.jianshu.io/upload_images/7130568-bd3a0ffca482eb73.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
现在算是知其然了, 那么怎样知其所以然呢? 即 为什么要分类这三个 case, 不重不漏了吗?
其实也简单, 只是太繁琐.
就是将各种情况枚举出来, 一一分析即可. 我最开始试过, 但是太多,写在代码里很容易写着写着就混了.
而算法导论上分成这三个case , 很简洁, 只是归纳了一下而已. 如果想看看枚举情况的图与说明,可以参考[^2] .
算法导论上的伪代码
```python
RB-INSERT-FIXUP(T, z)
while color[p[z]] = RED // 若“当前节点(z)的父节点是红色”,则进行以下处理。
do if p[z] = left[p[p[z]]] // 若“z的父节点”是“z的祖父节点的左孩子”则进行以下处理。
then y ← right[p[p[z]]] // 将y设置为“z的叔叔节点(z的祖父节点的右孩子)”
if color[y] = RED // Case 1条件叔叔是红色
then color[p[z]] ← BLACK ▹ Case 1 // (01) 将“父节点”设为黑色。
color[y] ← BLACK ▹ Case 1 // (02) 将“叔叔节点”设为黑色。
color[p[p[z]]] ← RED ▹ Case 1 // (03) 将“祖父节点”设为“红色”。
z ← p[p[z]] ▹ Case 1 // (04) 将“祖父节点”设为“当前节点”(红色节点)
else if z = right[p[z]] // Case 2条件叔叔是黑色且当前节点是右孩子
then z ← p[z] ▹ Case 2 // (01) 将“父节点”作为“新的当前节点”。
LEFT-ROTATE(T, z) ▹ Case 2 // (02) 以“新的当前节点”为支点进行左旋。
color[p[z]] ← BLACK ▹ Case 3 // Case 3条件叔叔是黑色且当前节点是左孩子。(01) 将“父节点”设为“黑色”。
color[p[p[z]]] ← RED ▹ Case 3 // (02) 将“祖父节点”设为“红色”。
RIGHT-ROTATE(T, p[p[z]]) ▹ Case 3 // (03) 以“祖父节点”为支点进行右旋。
else (same as then clause with "right" and "left" exchanged) // 若“z的父节点”是“z的祖父节点的右孩子”将上面的操作中“right”和“left”交换位置然后依次执行。
color[root[T]] ← BLACK
```
我用python 实现如下. 由于左右方向不同, 如果向上面伪代码那样实现, fixup 代码就会有两份类似的(即 right left 互换), 为了减少代码冗余, 我就定义了 `setChild`, `getChild` 函数, 传递左或是右孩子这个方向的数据(代码中是isLeft), 所以下面的就是完整功能的 fixup, 可以减少一般的代码量, haha😄,
(下文 删除结点同理)
其实阅读代码也简单, 可以直接当成 isLeft 取真值.
```python
def fixUpInsert(self,parent,nd):
''' adjust color and level, there are two red nodes: the new one and its parent'''
while not self.checkBlack(parent):
grand = self.getParent(parent)
isLeftPrt = grand.left is parent
uncle = grand.getChild(not isLeftPrt)
if not self.checkBlack(uncle):
# case 1: new node's uncle is red
self.setBlack(grand, False)
self.setBlack(grand.left, True)
self.setBlack(grand.right, True)
nd = grand
parent = self.getParent(nd)
else:
# case 2: new node's uncle is black(including nil leaf)
isLeftNode = parent.left is nd
if isLeftNode ^ isLeftPrt:
# case 2.1 the new node is inserted in left-right or right-left form
# grand grand
# parent or parent
# nd nd
parent.setChild(nd.getChild(isLeftPrt),not isLeftPrt)
nd.setChild(parent,isLeftPrt)
grand.setChild(nd,isLeftPrt)
nd,parent = parent,nd
# case 2.2 the new node is inserted in left-left or right-right form
# grand grand
# parent or parent
# nd nd
grand.setChild(parent.getChild(not isLeftPrt),isLeftPrt)
parent.setChild(grand,not isLeftPrt)
self.setBlack(grand, False)
self.setBlack(parent, True)
self.transferParent(grand,parent)
self.setBlack(self.root,True)
```
<a id="markdown-4-删除" name="4-删除"></a>
# 4. 删除
算法导论上的算法
写的很简练👍
![rb-delete](https://upload-images.jianshu.io/upload_images/7130568-688842ec88c4a598.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
<a id="markdown-41-二叉查找树删除结点" name="41-二叉查找树删除结点"></a>
## 4.1. 二叉查找树删除结点
下面 z 是要删除的结点, y 是 其后继或者是它自己, x 是 y 的一个孩子(如果 y 的孩子为 nil,则为 nli, 否则 y 只有一个非 nil 孩子, 为 x)
* 当 z 孩子全是 nil (y==z): 直接让其双亲对应的孩子为 nil
* 当 z 只有一个非 nil 孩子 x (y==z):
1. 如果 z 为根, 则让 x 为根.
2. 让 y 的双亲连接到 x
* 当 z 有两个非nil孩子(y!=z): 复制其后继 y 的内容到 z (除了指针,颜色) , 将其后继 y 的孩子(最多只有一个 非 nil ,不然就不是后继了)连接到其后继的双亲, 删除 其后继y,
即[^3] 如果要删除有两个孩子的结点 z , 则找到它的后继y(前趋同理), 可以推断 y 一定没有左孩子, 右孩子可能有,可能没有. 也就是最多一个孩子.
所以将 y 的值复制到 x 位置, 现在相当于删除 y 处的结点.
这样就化为 删除的结点最多一个孩子的情况.
![](http://upload-images.jianshu.io/upload_images/7130568-87ab28beaec30567?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
<a id="markdown-42-调整颜色与旋转" name="42-调整颜色与旋转"></a>
## 4.2. 调整颜色与旋转
可以发现只有当 y 是黑色,才进行颜色调整以及旋转(维持红黑性质), 因为如果删除的是红色, 不会影响黑高度, 所有红黑性质都不会破坏
伪代码如下, (我的python代码见文末)
![](https://upload-images.jianshu.io/upload_images/7130568-ed40ae4776709377.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
如果被删除的结点 y 是黑色的, 有三种破坏红黑性质的情况
1. y是根, 则 y 的一个红色孩子成为新根
2. 进行删除结点过程中, p(y) 的孩子有 x, 两者都是红色
3. 删除 y 导致包含y 的路径上的黑结点 少 1个
修复3的思路:
如果可能,在兄弟一支,通过旋转,改变颜色修复
否则, 将红结点一直向上推(因为当前路径上少了一个黑结点,向上推的过程中使红结点所在的子树都少一个黑结点), 直到到达树根, 那么全部路径都少一个黑结点, 3就修复了, 这时只需将根设为黑就修复了 1
代码中的 while 循环的目的是将额外的黑色沿树上移,直到
* x 指向一个红黑结点
* x 指向根,这时可以简单地消除额外的黑色
* 颜色修改与旋转
在 while 中, x 总是指向具有双重黑色的那个非根结点, 在第 2 行中要判断 x 是其双亲的左右孩子
w 表示 x 的相抵. w 不能为 nil(因为 x 是双重黑色)
算法中的四种情况如图所示
![](https://upload-images.jianshu.io/upload_images/7130568-f367bcb131c9719b.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
* x 的兄弟 w 是红色的
![](https://upload-images.jianshu.io/upload_images/7130568-cd139202bdc5406f.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
* x 的兄弟 w 是黑色的, w的两个孩子都是黑色的
* x 的兄弟 w 是黑色的, w 的左孩子是红,右孩子是黑
* x 的兄弟 w 是黑色的, w 的孩子是红色的
>>注意上面都是先考虑的左边, 右边可以对称地处理.
同插入一样, 为了便于理解, 可以作出状态机.
而且这些情形都是归纳化简了的, 你也可以枚举列出基本的全部情形.
![](https://upload-images.jianshu.io/upload_images/7130568-d6e8a332afade8d5.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
<a id="markdown-5-数据结构的扩张" name="5-数据结构的扩张"></a>
# 5. 数据结构的扩张
<a id="markdown-51-平衡树的扩张" name="51-平衡树的扩张"></a>
## 5.1. 平衡树的扩张
通过在平衡树(如红黑树上的每个结点 加上 一个数据域 size (表示以此结点为根的子树的结点数.) 可以使`获得第 i 大的数` 的时间复杂度为 $O(logn)$
在 $O(n)$ 时间内建立, python代码如下
```python
def setSize(root):
if root is None:return 0
root.size = setSize(root.left) + setSize(root.right)+1
```
在$O(logn)$时间查找,
```python
def find(root,i):
r = root.left.size +1
if r==i:
return root
if r > i:
return find(root.left,i)
else:
return find(root.right,i-r)
```
<a id="markdown-6-python-代码" name="6-python-代码"></a>
# 6. python 代码
**[github地址](https://github.com/mbinary/algorithm-and-data-structure.git)**
我用了 setChild, getChild 来简化代码量, 其他的基本上是按照算法导论上的伪代码提到的case 来实现的. 然后display 只是测试的时候,为了方便调试而层序遍历打印出来
效果如下
![](https://upload-images.jianshu.io/upload_images/7130568-721e18cc44dec604.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
```python
'''
#########################################################################
# File : redBlackTree.py
# Author: mbinary
# Mail: zhuheqin1@gmail.com
# Blog: https://mbinary.coding.me
# Github: https://github.com/mbinary
# Created Time: 2018-07-12 20:34
# Description:
#########################################################################
'''
from functools import total_ordering
from random import randint, shuffle
@total_ordering
class node:
def __init__(self,val,left=None,right=None,isBlack=False):
self.val =val
self.left = left
self.right = right
self.isBlack = isBlack
def __lt__(self,nd):
return self.val < nd.val
def __eq__(self,nd):
return nd is not None and self.val == nd.val
def setChild(self,nd,isLeft = True):
if isLeft: self.left = nd
else: self.right = nd
def getChild(self,isLeft):
if isLeft: return self.left
else: return self.right
def __bool__(self):
return self.val is not None
def __str__(self):
color = 'B' if self.isBlack else 'R'
return f'{color}-{self.val:}'
def __repr__(self):
return f'node({self.val},isBlack={self.isBlack})'
class redBlackTree:
def __init__(self,unique=False):
'''if unique is True, all node'vals are unique, else there may be equal vals'''
self.root = None
self.unique = unique
@staticmethod
def checkBlack(nd):
return nd is None or nd.isBlack
@staticmethod
def setBlack(nd,isBlack):
if nd is not None:
if isBlack is None or isBlack:
nd.isBlack = True
else:nd.isBlack = False
def sort(self,reverse = False):
''' return a generator of sorted data'''
def inOrder(root):
if root is None:return
if reverse:
yield from inOrder(root.right)
else:
yield from inOrder(root.left)
yield root
if reverse:
yield from inOrder(root.left)
else:
yield from inOrder(root.right)
yield from inOrder(self.root)
def getParent(self,chd):
'''note that use is to find real node when different nodes have euqiv val'''
if self.root is chd:return None
nd = self.root
while nd:
if nd>chd and nd.left is not None:
if nd.left is chd: return nd
else: nd = nd.left
elif nd<chd and nd.right is not None:
if nd.right is chd: return nd
else: nd = nd.right
def find(self,val):
nd = self.root
while nd:
if nd.val ==val:
return nd
elif nd.val>val:
nd = nd.left
else:
nd = nd.right
def getSuccessor(self,nd):
if nd:
if nd.right:
nd = nd.right
while nd.left:
nd = nd.left
return nd
else:return self.getParent(nd)
def transferParent(self,origin,new):
if origin is self.root:
self.root = new
else:
prt = self.getParent(origin)
prt.setChild(new, prt.left is origin)
def insert(self,nd):
if not isinstance(nd,node):
nd = node(nd)
elif nd.isBlack: nd.isBlack = False
if self.root is None:
self.root = nd
self.root.isBlack = True
else:
parent = self.root
while parent:
if parent == nd : return None
if parent>nd:
if parent.left :
parent = parent.left
else:
parent.left = nd
break
else:
if parent.right:
parent = parent.right
else:
parent.right = nd
break
self.fixUpInsert(parent,nd)
def fixUpInsert(self,parent,nd):
''' adjust color and level, there are two red nodes: the new one and its parent'''
while not self.checkBlack(parent):
grand = self.getParent(parent)
isLeftPrt = grand.left is parent
uncle = grand.getChild(not isLeftPrt)
if not self.checkBlack(uncle):
# case 1: new node's uncle is red
self.setBlack(grand, False)
self.setBlack(grand.left, True)
self.setBlack(grand.right, True)
nd = grand
parent = self.getParent(nd)
else:
# case 2: new node's uncle is black(including nil leaf)
isLeftNode = parent.left is nd
if isLeftNode ^ isLeftPrt:
# case 2.1 the new node is inserted in left-right or right-left form
# grand grand
# parent or parent
# nd nd
parent.setChild(nd.getChild(isLeftPrt),not isLeftPrt)
nd.setChild(parent,isLeftPrt)
grand.setChild(nd,isLeftPrt)
nd,parent = parent,nd
# case 2.2 the new node is inserted in left-left or right-right form
# grand grand
# parent or parent
# nd nd
grand.setChild(parent.getChild(not isLeftPrt),isLeftPrt)
parent.setChild(grand,not isLeftPrt)
self.setBlack(grand, False)
self.setBlack(parent, True)
self.transferParent(grand,parent)
self.setBlack(self.root,True)
def copyNode(self,src,des):
'''when deleting a node which has two kids,
copy its succesor's data to his position
data exclude left, right , isBlack
'''
des.val = src.val
def delete(self,nd):
'''delete node in a binary search tree'''
if not isinstance(nd,node):
nd = self.find(nd)
if nd is None: return
y = None
if nd.left and nd.right:
y= self.getSuccessor(nd)
else:
y = nd
py = self.getParent(y)
x = y.left if y.left else y.right
if py is None:
self.root = x
elif y is py.left:
py.left = x
else:
py.right = x
if y != nd:
self.copyNode(y,nd)
if self.checkBlack(y): self.fixUpDel(py,x)
def fixUpDel(self,prt,chd):
''' adjust colors and rotate '''
while self.root != chd and self.checkBlack(chd):
isLeft = prt.left is chd
brother = prt.getChild(not isLeft)
# brother is black
lb = self.checkBlack(brother.getChild(isLeft))
rb = self.checkBlack(brother.getChild(not isLeft))
if not self.checkBlack(brother):
# case 1: brother is red. converted to case 2,3,4
# prt (isLeft) rotate
prt.setChild(brother.getChild(isLeft), not isLeft)
brother.setChild(prt, isLeft)
self.setBlack(prt,False)
self.setBlack(brother,True)
self.transferParent(prt,brother)
elif lb and rb:
# case 2: brother is black and two kids are black.
# conveted to the begin case
self.setBlack(brother,False)
chd = prt
prt = self.getParent(chd)
else:
if rb:
# case 3: brother is black and left kid is red and right child is black
# uncle's son is nephew, and niece for uncle's daughter
nephew = brother.getChild(isLeft)
self.setBlack(nephew,True)
self.setBlack(brother,False)
# brother (not isLeft) rotate
prt.setChild(nephew,not isLeft)
brother.setChild(nephew.getChild(not isLeft),isLeft)
nephew.setChild(brother, not isLeft)
brother = nephew
# case 4: brother is black and right child is red
brother.isBlack = prt.isBlack
self.setBlack(prt,True)
self.setBlack(brother.getChild(not isLeft),True)
# prt left rotate
prt.setChild(brother.getChild(isLeft),not isLeft)
brother.setChild(prt,isLeft)
self.transferParent(prt,brother)
chd = self.root
self.setBlack(chd,True)
def display(self):
def getHeight(nd):
if nd is None:return 0
return max(getHeight(nd.left),getHeight(nd.right)) +1
def levelVisit(root):
from collections import deque
lst = deque([root])
level = []
h = getHeight(root)
ct = lv = 0
while 1:
ct+=1
nd = lst.popleft()
if ct >= 2**lv:
lv+=1
if lv>h:break
level.append([])
level[-1].append(str(nd))
if nd is not None:
lst += [nd.left,nd.right]
else:
lst +=[None,None]
return level
def addBlank(lines):
width = 5
sep = ' '*width
n = len(lines)
for i,oneline in enumerate(lines):
k = 2**(n-i) -1
new = [sep*((k-1)//2)]
for s in oneline:
new.append(s.ljust(width))
new.append(sep*k)
lines[i] = new
return lines
lines = levelVisit(self.root)
lines = addBlank(lines)
li = [''.join(line) for line in lines]
li.insert(0,'red-black-tree'.rjust(48,'-') + '-'*33)
li.append('end'.rjust(42,'-')+'-'*39+'\n')
return '\n'.join(li)
def __str__(self):
return self.display()
```
测试代码
```python
def genNum(n =10):
nums =[]
for i in range(n):
while 1:
d = randint(0,100)
if d not in nums:
nums.append(d)
break
return nums
def buildTree(n=10,nums=None,visitor=None):
if nums is None or nums ==[]: nums = genNum(n)
rbtree = redBlackTree()
print(f'build a red-black tree using {nums}')
for i in nums:
rbtree.insert(i)
if visitor:
visitor(rbtree)
return rbtree,nums
def testInsert():
def visitor(t):
print(t)
rbtree,nums = buildTree(visitor = visitor)
print('-'*5+ 'in-order visit' + '-'*5)
for i,j in enumerate(rbtree.sort()):
print(f'{i+1}: {j}')
def testSuc():
rbtree,nums = buildTree()
for i in rbtree.sort():
print(f'{i}\'s suc is {rbtree.getSuccessor(i)}')
def testDelete():
#nums = [2,3,3,2,6,7,2,1]
nums = None
rbtree,nums = buildTree(nums = nums)
print(rbtree)
for i in nums:
print(f'deleting {i}')
rbtree.delete(i)
print(rbtree)
if __name__=='__main__':
#testSuc()
#testInsert()
testDelete()
```
<a id="markdown-7-参考" name="7-参考"></a>
# 7. 参考
[^1]: 算法导论
[^2]: https://www.jianshu.com/p/a5514510f5b9?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation
[^3]: https://www.jianshu.com/p/0b68b992f688?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation