2019-06-11 16:26:24 +08:00
|
|
|
''' mbinary
|
|
|
|
#########################################################################
|
|
|
|
# File : fft.py
|
|
|
|
# Author: mbinary
|
|
|
|
# Mail: zhuheqin1@gmail.com
|
|
|
|
# Blog: https://mbinary.xyz
|
|
|
|
# Github: https://github.com/mbinary
|
|
|
|
# Created Time: 2019-06-11 12:48
|
|
|
|
# Description:
|
|
|
|
#########################################################################
|
|
|
|
'''
|
2019-06-11 10:51:46 +08:00
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
2019-06-11 12:48:40 +08:00
|
|
|
def _fft_n2(a, invert):
|
|
|
|
'''O(n^2)'''
|
|
|
|
N = len(a)
|
|
|
|
w = np.arange(N)
|
|
|
|
i = 2j if invert else -2j
|
|
|
|
m = w.reshape((N, 1)) * w
|
|
|
|
W = np.exp(m * i * np.pi / N)
|
|
|
|
return np.concatenate(np.dot(W, a.reshape((N,
|
|
|
|
1)))) # important, cannot use *
|
|
|
|
|
|
|
|
|
2019-06-11 10:51:46 +08:00
|
|
|
def _fft(a, invert=False):
|
2019-06-11 12:48:40 +08:00
|
|
|
'''recursion version'''
|
2019-06-11 10:51:46 +08:00
|
|
|
N = len(a)
|
|
|
|
if N == 1:
|
|
|
|
return [a[0]]
|
2019-06-11 12:48:40 +08:00
|
|
|
elif N & (N - 1) == 0: # O(nlogn), 2^k
|
2019-06-11 10:51:46 +08:00
|
|
|
even = _fft(a[::2], invert)
|
|
|
|
odd = _fft(a[1::2], invert)
|
|
|
|
i = 2j if invert else -2j
|
|
|
|
factor = np.exp(i * np.pi * np.arange(N // 2) / N)
|
|
|
|
prod = factor * odd
|
|
|
|
return np.concatenate([even + prod, even - prod])
|
2019-06-11 12:48:40 +08:00
|
|
|
else:
|
|
|
|
return _fft_n2(a, invert)
|
|
|
|
|
|
|
|
|
|
|
|
def _fft2(a, invert=False):
|
|
|
|
''' iteration version'''
|
|
|
|
|
|
|
|
def rev(x):
|
|
|
|
ret = 0
|
|
|
|
for i in range(r):
|
|
|
|
ret <<= 1
|
|
|
|
if x & 1:
|
|
|
|
ret += 1
|
|
|
|
x >>= 1
|
|
|
|
return ret
|
|
|
|
|
|
|
|
N = len(a)
|
|
|
|
if N & (N - 1) == 0: # O(nlogn), 2^k
|
|
|
|
r = int(np.log(N))
|
2020-04-15 12:28:20 +08:00
|
|
|
c = np.array(a, dtype='complex')
|
2019-06-11 12:48:40 +08:00
|
|
|
i = 2j if invert else -2j
|
|
|
|
w = np.exp(i * np.pi / N)
|
|
|
|
for h in range(r - 1, -1, -1):
|
|
|
|
p = 2**h
|
|
|
|
z = w**(N / p / 2)
|
|
|
|
for k in range(N):
|
|
|
|
if k % p == k % (2 * p):
|
|
|
|
c[k], c[k + p] = c[k] + c[k + p], c[k] * z**(k % p)
|
|
|
|
|
|
|
|
return np.asarray([c[rev(i)] for i in range(N)])
|
|
|
|
else: # O(n^2)
|
|
|
|
return _fft_n2(a, invert)
|
2019-06-11 10:51:46 +08:00
|
|
|
|
|
|
|
|
|
|
|
def fft(a):
|
|
|
|
'''fourier[a]'''
|
|
|
|
n = len(a)
|
2019-06-11 12:48:40 +08:00
|
|
|
if n == 0:
|
|
|
|
raise Exception("[Error]: Invalid length: 0")
|
2019-06-11 10:51:46 +08:00
|
|
|
return _fft(a)
|
|
|
|
|
|
|
|
|
|
|
|
def ifft(a):
|
|
|
|
'''invert fourier[a]'''
|
|
|
|
n = len(a)
|
2019-06-11 12:48:40 +08:00
|
|
|
if n == 0:
|
|
|
|
raise Exception("[Error]: Invalid length: 0")
|
2019-06-11 10:51:46 +08:00
|
|
|
return _fft(a, True) / n
|
|
|
|
|
|
|
|
|
|
|
|
def fft2(arr):
|
2019-06-11 12:48:40 +08:00
|
|
|
return np.apply_along_axis(fft, 0,
|
|
|
|
np.apply_along_axis(fft, 1, np.asarray(arr)))
|
2019-06-11 10:51:46 +08:00
|
|
|
|
|
|
|
|
|
|
|
def ifft2(arr):
|
2019-06-11 12:48:40 +08:00
|
|
|
return np.apply_along_axis(ifft, 0,
|
|
|
|
np.apply_along_axis(ifft, 1, np.asarray(arr)))
|
2019-06-11 10:51:46 +08:00
|
|
|
|
|
|
|
|
|
|
|
def test(n=128):
|
2019-06-11 12:48:40 +08:00
|
|
|
print('\nsequence length:', n)
|
2019-06-11 10:51:46 +08:00
|
|
|
print('fft')
|
|
|
|
li = np.random.random(n)
|
|
|
|
print(np.allclose(fft(li), np.fft.fft(li)))
|
|
|
|
|
|
|
|
print('ifft')
|
|
|
|
li = np.random.random(n)
|
|
|
|
print(np.allclose(ifft(li), np.fft.ifft(li)))
|
|
|
|
|
|
|
|
print('fft2')
|
|
|
|
li = np.random.random(n * n).reshape((n, n))
|
|
|
|
print(np.allclose(fft2(li), np.fft.fft2(li)))
|
|
|
|
|
|
|
|
print('ifft2')
|
|
|
|
li = np.random.random(n * n).reshape((n, n))
|
|
|
|
print(np.allclose(ifft2(li), np.fft.ifft2(li)))
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
2019-06-11 12:48:40 +08:00
|
|
|
for i in range(1, 4):
|
|
|
|
test(i * 16)
|