mirror of
https://github.com/babysor/MockingBird.git
synced 2024-03-22 13:11:31 +08:00
74a3fc97d0
Need readme
153 lines
5.2 KiB
Python
153 lines
5.2 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
# Copyright 2020 Johns Hopkins University (Shinji Watanabe)
|
|
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
|
|
|
"""Encoder self-attention layer definition."""
|
|
|
|
import torch
|
|
|
|
from torch import nn
|
|
|
|
from .layer_norm import LayerNorm
|
|
|
|
|
|
class EncoderLayer(nn.Module):
|
|
"""Encoder layer module.
|
|
|
|
:param int size: input dim
|
|
:param espnet.nets.pytorch_backend.transformer.attention.
|
|
MultiHeadedAttention self_attn: self attention module
|
|
RelPositionMultiHeadedAttention self_attn: self attention module
|
|
:param espnet.nets.pytorch_backend.transformer.positionwise_feed_forward.
|
|
PositionwiseFeedForward feed_forward:
|
|
feed forward module
|
|
:param espnet.nets.pytorch_backend.transformer.positionwise_feed_forward
|
|
for macaron style
|
|
PositionwiseFeedForward feed_forward:
|
|
feed forward module
|
|
:param espnet.nets.pytorch_backend.conformer.convolution.
|
|
ConvolutionModule feed_foreard:
|
|
feed forward module
|
|
:param float dropout_rate: dropout rate
|
|
:param bool normalize_before: whether to use layer_norm before the first block
|
|
:param bool concat_after: whether to concat attention layer's input and output
|
|
if True, additional linear will be applied.
|
|
i.e. x -> x + linear(concat(x, att(x)))
|
|
if False, no additional linear will be applied. i.e. x -> x + att(x)
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
size,
|
|
self_attn,
|
|
feed_forward,
|
|
feed_forward_macaron,
|
|
conv_module,
|
|
dropout_rate,
|
|
normalize_before=True,
|
|
concat_after=False,
|
|
):
|
|
"""Construct an EncoderLayer object."""
|
|
super(EncoderLayer, self).__init__()
|
|
self.self_attn = self_attn
|
|
self.feed_forward = feed_forward
|
|
self.feed_forward_macaron = feed_forward_macaron
|
|
self.conv_module = conv_module
|
|
self.norm_ff = LayerNorm(size) # for the FNN module
|
|
self.norm_mha = LayerNorm(size) # for the MHA module
|
|
if feed_forward_macaron is not None:
|
|
self.norm_ff_macaron = LayerNorm(size)
|
|
self.ff_scale = 0.5
|
|
else:
|
|
self.ff_scale = 1.0
|
|
if self.conv_module is not None:
|
|
self.norm_conv = LayerNorm(size) # for the CNN module
|
|
self.norm_final = LayerNorm(size) # for the final output of the block
|
|
self.dropout = nn.Dropout(dropout_rate)
|
|
self.size = size
|
|
self.normalize_before = normalize_before
|
|
self.concat_after = concat_after
|
|
if self.concat_after:
|
|
self.concat_linear = nn.Linear(size + size, size)
|
|
|
|
def forward(self, x_input, mask, cache=None):
|
|
"""Compute encoded features.
|
|
|
|
:param torch.Tensor x_input: encoded source features, w/o pos_emb
|
|
tuple((batch, max_time_in, size), (1, max_time_in, size))
|
|
or (batch, max_time_in, size)
|
|
:param torch.Tensor mask: mask for x (batch, max_time_in)
|
|
:param torch.Tensor cache: cache for x (batch, max_time_in - 1, size)
|
|
:rtype: Tuple[torch.Tensor, torch.Tensor]
|
|
"""
|
|
if isinstance(x_input, tuple):
|
|
x, pos_emb = x_input[0], x_input[1]
|
|
else:
|
|
x, pos_emb = x_input, None
|
|
|
|
# whether to use macaron style
|
|
if self.feed_forward_macaron is not None:
|
|
residual = x
|
|
if self.normalize_before:
|
|
x = self.norm_ff_macaron(x)
|
|
x = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(x))
|
|
if not self.normalize_before:
|
|
x = self.norm_ff_macaron(x)
|
|
|
|
# multi-headed self-attention module
|
|
residual = x
|
|
if self.normalize_before:
|
|
x = self.norm_mha(x)
|
|
|
|
if cache is None:
|
|
x_q = x
|
|
else:
|
|
assert cache.shape == (x.shape[0], x.shape[1] - 1, self.size)
|
|
x_q = x[:, -1:, :]
|
|
residual = residual[:, -1:, :]
|
|
mask = None if mask is None else mask[:, -1:, :]
|
|
|
|
if pos_emb is not None:
|
|
x_att = self.self_attn(x_q, x, x, pos_emb, mask)
|
|
else:
|
|
x_att = self.self_attn(x_q, x, x, mask)
|
|
|
|
if self.concat_after:
|
|
x_concat = torch.cat((x, x_att), dim=-1)
|
|
x = residual + self.concat_linear(x_concat)
|
|
else:
|
|
x = residual + self.dropout(x_att)
|
|
if not self.normalize_before:
|
|
x = self.norm_mha(x)
|
|
|
|
# convolution module
|
|
if self.conv_module is not None:
|
|
residual = x
|
|
if self.normalize_before:
|
|
x = self.norm_conv(x)
|
|
x = residual + self.dropout(self.conv_module(x))
|
|
if not self.normalize_before:
|
|
x = self.norm_conv(x)
|
|
|
|
# feed forward module
|
|
residual = x
|
|
if self.normalize_before:
|
|
x = self.norm_ff(x)
|
|
x = residual + self.ff_scale * self.dropout(self.feed_forward(x))
|
|
if not self.normalize_before:
|
|
x = self.norm_ff(x)
|
|
|
|
if self.conv_module is not None:
|
|
x = self.norm_final(x)
|
|
|
|
if cache is not None:
|
|
x = torch.cat([cache, x], dim=1)
|
|
|
|
if pos_emb is not None:
|
|
return (x, pos_emb), mask
|
|
|
|
return x, mask
|