mirror of
https://github.com/babysor/MockingBird.git
synced 2024-03-22 13:11:31 +08:00
6a793cea84
* The new vocoder Fre-GAN is now supported * Improved some fregan details * Fixed the problem that the existing model could not be loaded to continue training when training GAN * Updated reference papers * GAN training now supports DistributedDataParallel (DDP) * Added requirements.txt * GAN training uses single card training by default * Added note about GAN vocoder training with multiple GPUs * Added missing files for Fre-GAN
136 lines
4.8 KiB
Python
136 lines
4.8 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
# Copyright 2019 Tomoki Hayashi
|
|
# MIT License (https://opensource.org/licenses/MIT)
|
|
|
|
"""STFT-based Loss modules."""
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
|
|
def stft(x, fft_size, hop_size, win_length, window):
|
|
"""Perform STFT and convert to magnitude spectrogram.
|
|
Args:
|
|
x (Tensor): Input signal tensor (B, T).
|
|
fft_size (int): FFT size.
|
|
hop_size (int): Hop size.
|
|
win_length (int): Window length.
|
|
window (str): Window function type.
|
|
Returns:
|
|
Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1).
|
|
"""
|
|
x_stft = torch.stft(x, fft_size, hop_size, win_length, window)
|
|
real = x_stft[..., 0]
|
|
imag = x_stft[..., 1]
|
|
|
|
# NOTE(kan-bayashi): clamp is needed to avoid nan or inf
|
|
return torch.sqrt(torch.clamp(real ** 2 + imag ** 2, min=1e-7)).transpose(2, 1)
|
|
|
|
|
|
class SpectralConvergengeLoss(torch.nn.Module):
|
|
"""Spectral convergence loss module."""
|
|
|
|
def __init__(self):
|
|
"""Initilize spectral convergence loss module."""
|
|
super(SpectralConvergengeLoss, self).__init__()
|
|
|
|
def forward(self, x_mag, y_mag):
|
|
"""Calculate forward propagation.
|
|
Args:
|
|
x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
|
|
y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
|
|
Returns:
|
|
Tensor: Spectral convergence loss value.
|
|
"""
|
|
return torch.norm(y_mag - x_mag, p="fro") / torch.norm(y_mag, p="fro")
|
|
|
|
|
|
class LogSTFTMagnitudeLoss(torch.nn.Module):
|
|
"""Log STFT magnitude loss module."""
|
|
|
|
def __init__(self):
|
|
"""Initilize los STFT magnitude loss module."""
|
|
super(LogSTFTMagnitudeLoss, self).__init__()
|
|
|
|
def forward(self, x_mag, y_mag):
|
|
"""Calculate forward propagation.
|
|
Args:
|
|
x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
|
|
y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
|
|
Returns:
|
|
Tensor: Log STFT magnitude loss value.
|
|
"""
|
|
return F.l1_loss(torch.log(y_mag), torch.log(x_mag))
|
|
|
|
|
|
class STFTLoss(torch.nn.Module):
|
|
"""STFT loss module."""
|
|
|
|
def __init__(self, fft_size=1024, shift_size=120, win_length=600, window="hann_window"):
|
|
"""Initialize STFT loss module."""
|
|
super(STFTLoss, self).__init__()
|
|
self.fft_size = fft_size
|
|
self.shift_size = shift_size
|
|
self.win_length = win_length
|
|
self.window = getattr(torch, window)(win_length)
|
|
self.spectral_convergenge_loss = SpectralConvergengeLoss()
|
|
self.log_stft_magnitude_loss = LogSTFTMagnitudeLoss()
|
|
|
|
def forward(self, x, y):
|
|
"""Calculate forward propagation.
|
|
Args:
|
|
x (Tensor): Predicted signal (B, T).
|
|
y (Tensor): Groundtruth signal (B, T).
|
|
Returns:
|
|
Tensor: Spectral convergence loss value.
|
|
Tensor: Log STFT magnitude loss value.
|
|
"""
|
|
x_mag = stft(x, self.fft_size, self.shift_size, self.win_length, self.window.to(x.get_device()))
|
|
y_mag = stft(y, self.fft_size, self.shift_size, self.win_length, self.window.to(x.get_device()))
|
|
sc_loss = self.spectral_convergenge_loss(x_mag, y_mag)
|
|
mag_loss = self.log_stft_magnitude_loss(x_mag, y_mag)
|
|
|
|
return sc_loss, mag_loss
|
|
|
|
|
|
class MultiResolutionSTFTLoss(torch.nn.Module):
|
|
"""Multi resolution STFT loss module."""
|
|
|
|
def __init__(self,
|
|
fft_sizes=[1024, 2048, 512],
|
|
hop_sizes=[120, 240, 50],
|
|
win_lengths=[600, 1200, 240],
|
|
window="hann_window"):
|
|
"""Initialize Multi resolution STFT loss module.
|
|
Args:
|
|
fft_sizes (list): List of FFT sizes.
|
|
hop_sizes (list): List of hop sizes.
|
|
win_lengths (list): List of window lengths.
|
|
window (str): Window function type.
|
|
"""
|
|
super(MultiResolutionSTFTLoss, self).__init__()
|
|
assert len(fft_sizes) == len(hop_sizes) == len(win_lengths)
|
|
self.stft_losses = torch.nn.ModuleList()
|
|
for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths):
|
|
self.stft_losses += [STFTLoss(fs, ss, wl, window)]
|
|
|
|
def forward(self, x, y):
|
|
"""Calculate forward propagation.
|
|
Args:
|
|
x (Tensor): Predicted signal (B, T).
|
|
y (Tensor): Groundtruth signal (B, T).
|
|
Returns:
|
|
Tensor: Multi resolution spectral convergence loss value.
|
|
Tensor: Multi resolution log STFT magnitude loss value.
|
|
"""
|
|
sc_loss = 0.0
|
|
mag_loss = 0.0
|
|
for f in self.stft_losses:
|
|
sc_l, mag_l = f(x, y)
|
|
sc_loss += sc_l
|
|
mag_loss += mag_l
|
|
sc_loss /= len(self.stft_losses)
|
|
mag_loss /= len(self.stft_losses)
|
|
|
|
return sc_loss, mag_loss |