mirror of
https://github.com/babysor/MockingBird.git
synced 2024-03-22 13:11:31 +08:00
350b190662
* The new vocoder Fre-GAN is now supported * Improved some fregan details * Fixed the problem that the existing model could not be loaded to continue training when training GAN * Updated reference papers
251 lines
12 KiB
Python
251 lines
12 KiB
Python
import warnings
|
|
warnings.simplefilter(action='ignore', category=FutureWarning)
|
|
import itertools
|
|
import os
|
|
import time
|
|
import argparse
|
|
import json
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
from torch.utils.data import DistributedSampler, DataLoader
|
|
import torch.multiprocessing as mp
|
|
from torch.distributed import init_process_group
|
|
from torch.nn.parallel import DistributedDataParallel
|
|
from vocoder.hifigan.meldataset import MelDataset, mel_spectrogram, get_dataset_filelist
|
|
from vocoder.hifigan.models import Generator, MultiPeriodDiscriminator, MultiScaleDiscriminator, feature_loss, generator_loss,\
|
|
discriminator_loss
|
|
from vocoder.hifigan.utils import plot_spectrogram, scan_checkpoint, load_checkpoint, save_checkpoint
|
|
|
|
torch.backends.cudnn.benchmark = True
|
|
|
|
|
|
def train(rank, a, h):
|
|
|
|
a.checkpoint_path = a.models_dir.joinpath(a.run_id+'_hifigan')
|
|
a.checkpoint_path.mkdir(exist_ok=True)
|
|
a.training_epochs = 3100
|
|
a.stdout_interval = 5
|
|
a.checkpoint_interval = a.backup_every
|
|
a.summary_interval = 5000
|
|
a.validation_interval = 1000
|
|
a.fine_tuning = True
|
|
|
|
a.input_wavs_dir = a.syn_dir.joinpath("audio")
|
|
a.input_mels_dir = a.syn_dir.joinpath("mels")
|
|
|
|
if h.num_gpus > 1:
|
|
init_process_group(backend=h.dist_config['dist_backend'], init_method=h.dist_config['dist_url'],
|
|
world_size=h.dist_config['world_size'] * h.num_gpus, rank=rank)
|
|
|
|
torch.cuda.manual_seed(h.seed)
|
|
device = torch.device('cuda:{:d}'.format(rank))
|
|
|
|
generator = Generator(h).to(device)
|
|
mpd = MultiPeriodDiscriminator().to(device)
|
|
msd = MultiScaleDiscriminator().to(device)
|
|
|
|
if rank == 0:
|
|
print(generator)
|
|
os.makedirs(a.checkpoint_path, exist_ok=True)
|
|
print("checkpoints directory : ", a.checkpoint_path)
|
|
|
|
if os.path.isdir(a.checkpoint_path):
|
|
cp_g = scan_checkpoint(a.checkpoint_path, 'g_hifigan_')
|
|
cp_do = scan_checkpoint(a.checkpoint_path, 'do_hifigan_')
|
|
|
|
steps = 0
|
|
if cp_g is None or cp_do is None:
|
|
state_dict_do = None
|
|
last_epoch = -1
|
|
else:
|
|
state_dict_g = load_checkpoint(cp_g, device)
|
|
state_dict_do = load_checkpoint(cp_do, device)
|
|
generator.load_state_dict(state_dict_g['generator'])
|
|
mpd.load_state_dict(state_dict_do['mpd'])
|
|
msd.load_state_dict(state_dict_do['msd'])
|
|
steps = state_dict_do['steps'] + 1
|
|
last_epoch = state_dict_do['epoch']
|
|
|
|
if h.num_gpus > 1:
|
|
generator = DistributedDataParallel(generator, device_ids=[rank]).to(device)
|
|
mpd = DistributedDataParallel(mpd, device_ids=[rank]).to(device)
|
|
msd = DistributedDataParallel(msd, device_ids=[rank]).to(device)
|
|
|
|
optim_g = torch.optim.AdamW(generator.parameters(), h.learning_rate, betas=[h.adam_b1, h.adam_b2])
|
|
optim_d = torch.optim.AdamW(itertools.chain(msd.parameters(), mpd.parameters()),
|
|
h.learning_rate, betas=[h.adam_b1, h.adam_b2])
|
|
|
|
if state_dict_do is not None:
|
|
optim_g.load_state_dict(state_dict_do['optim_g'])
|
|
optim_d.load_state_dict(state_dict_do['optim_d'])
|
|
|
|
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=h.lr_decay, last_epoch=last_epoch)
|
|
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=h.lr_decay, last_epoch=last_epoch)
|
|
|
|
training_filelist, validation_filelist = get_dataset_filelist(a)
|
|
|
|
# print(training_filelist)
|
|
# exit()
|
|
|
|
trainset = MelDataset(training_filelist, h.segment_size, h.n_fft, h.num_mels,
|
|
h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, n_cache_reuse=0,
|
|
shuffle=False if h.num_gpus > 1 else True, fmax_loss=h.fmax_for_loss, device=device,
|
|
fine_tuning=a.fine_tuning, base_mels_path=a.input_mels_dir)
|
|
|
|
train_sampler = DistributedSampler(trainset) if h.num_gpus > 1 else None
|
|
|
|
train_loader = DataLoader(trainset, num_workers=h.num_workers, shuffle=False,
|
|
sampler=train_sampler,
|
|
batch_size=h.batch_size,
|
|
pin_memory=True,
|
|
drop_last=True)
|
|
|
|
if rank == 0:
|
|
validset = MelDataset(validation_filelist, h.segment_size, h.n_fft, h.num_mels,
|
|
h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, False, False, n_cache_reuse=0,
|
|
fmax_loss=h.fmax_for_loss, device=device, fine_tuning=a.fine_tuning,
|
|
base_mels_path=a.input_mels_dir)
|
|
validation_loader = DataLoader(validset, num_workers=1, shuffle=False,
|
|
sampler=None,
|
|
batch_size=1,
|
|
pin_memory=True,
|
|
drop_last=True)
|
|
|
|
sw = SummaryWriter(os.path.join(a.checkpoint_path, 'logs'))
|
|
|
|
generator.train()
|
|
mpd.train()
|
|
msd.train()
|
|
for epoch in range(max(0, last_epoch), a.training_epochs):
|
|
if rank == 0:
|
|
start = time.time()
|
|
print("Epoch: {}".format(epoch+1))
|
|
|
|
if h.num_gpus > 1:
|
|
train_sampler.set_epoch(epoch)
|
|
|
|
for i, batch in enumerate(train_loader):
|
|
if rank == 0:
|
|
start_b = time.time()
|
|
x, y, _, y_mel = batch
|
|
x = torch.autograd.Variable(x.to(device, non_blocking=True))
|
|
y = torch.autograd.Variable(y.to(device, non_blocking=True))
|
|
y_mel = torch.autograd.Variable(y_mel.to(device, non_blocking=True))
|
|
y = y.unsqueeze(1)
|
|
|
|
y_g_hat = generator(x)
|
|
y_g_hat_mel = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size,
|
|
h.fmin, h.fmax_for_loss)
|
|
|
|
optim_d.zero_grad()
|
|
|
|
# MPD
|
|
y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach())
|
|
loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss(y_df_hat_r, y_df_hat_g)
|
|
|
|
# MSD
|
|
y_ds_hat_r, y_ds_hat_g, _, _ = msd(y, y_g_hat.detach())
|
|
loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss(y_ds_hat_r, y_ds_hat_g)
|
|
|
|
loss_disc_all = loss_disc_s + loss_disc_f
|
|
|
|
loss_disc_all.backward()
|
|
optim_d.step()
|
|
|
|
# Generator
|
|
optim_g.zero_grad()
|
|
|
|
# L1 Mel-Spectrogram Loss
|
|
loss_mel = F.l1_loss(y_mel, y_g_hat_mel) * 45
|
|
|
|
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat)
|
|
y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(y, y_g_hat)
|
|
loss_fm_f = feature_loss(fmap_f_r, fmap_f_g)
|
|
loss_fm_s = feature_loss(fmap_s_r, fmap_s_g)
|
|
loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g)
|
|
loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g)
|
|
loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel
|
|
|
|
loss_gen_all.backward()
|
|
optim_g.step()
|
|
|
|
if rank == 0:
|
|
# STDOUT logging
|
|
if steps % a.stdout_interval == 0:
|
|
with torch.no_grad():
|
|
mel_error = F.l1_loss(y_mel, y_g_hat_mel).item()
|
|
|
|
print('Steps : {:d}, Gen Loss Total : {:4.3f}, Mel-Spec. Error : {:4.3f}, s/b : {:4.3f}'.
|
|
format(steps, loss_gen_all, mel_error, time.time() - start_b))
|
|
|
|
# checkpointing
|
|
if steps % a.checkpoint_interval == 0 and steps != 0:
|
|
checkpoint_path = "{}/g_hifigan_{:08d}.pt".format(a.checkpoint_path, steps)
|
|
save_checkpoint(checkpoint_path,
|
|
{'generator': (generator.module if h.num_gpus > 1 else generator).state_dict()})
|
|
checkpoint_path = "{}/do_hifigan_{:08d}.pt".format(a.checkpoint_path, steps)
|
|
save_checkpoint(checkpoint_path,
|
|
{'mpd': (mpd.module if h.num_gpus > 1 else mpd).state_dict(),
|
|
'msd': (msd.module if h.num_gpus > 1 else msd).state_dict(),
|
|
'optim_g': optim_g.state_dict(), 'optim_d': optim_d.state_dict(), 'steps': steps,
|
|
'epoch': epoch})
|
|
|
|
# Tensorboard summary logging
|
|
if steps % a.summary_interval == 0:
|
|
sw.add_scalar("training/gen_loss_total", loss_gen_all, steps)
|
|
sw.add_scalar("training/mel_spec_error", mel_error, steps)
|
|
|
|
|
|
# save temperate hifigan model
|
|
if steps % a.save_every == 0:
|
|
checkpoint_path = "{}/g_hifigan.pt".format(a.checkpoint_path)
|
|
save_checkpoint(checkpoint_path,
|
|
{'generator': (generator.module if h.num_gpus > 1 else generator).state_dict()})
|
|
checkpoint_path = "{}/do_hifigan.pt".format(a.checkpoint_path)
|
|
save_checkpoint(checkpoint_path,
|
|
{'mpd': (mpd.module if h.num_gpus > 1 else mpd).state_dict(),
|
|
'msd': (msd.module if h.num_gpus > 1 else msd).state_dict(),
|
|
'optim_g': optim_g.state_dict(), 'optim_d': optim_d.state_dict(), 'steps': steps,
|
|
'epoch': epoch})
|
|
|
|
# Validation
|
|
if steps % a.validation_interval == 0: # and steps != 0:
|
|
generator.eval()
|
|
torch.cuda.empty_cache()
|
|
val_err_tot = 0
|
|
with torch.no_grad():
|
|
for j, batch in enumerate(validation_loader):
|
|
x, y, _, y_mel = batch
|
|
y_g_hat = generator(x.to(device))
|
|
y_mel = torch.autograd.Variable(y_mel.to(device, non_blocking=True))
|
|
y_g_hat_mel = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate,
|
|
h.hop_size, h.win_size,
|
|
h.fmin, h.fmax_for_loss)
|
|
# val_err_tot += F.l1_loss(y_mel, y_g_hat_mel).item()
|
|
|
|
if j <= 4:
|
|
if steps == 0:
|
|
sw.add_audio('gt/y_{}'.format(j), y[0], steps, h.sampling_rate)
|
|
sw.add_figure('gt/y_spec_{}'.format(j), plot_spectrogram(x[0]), steps)
|
|
|
|
sw.add_audio('generated/y_hat_{}'.format(j), y_g_hat[0], steps, h.sampling_rate)
|
|
y_hat_spec = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels,
|
|
h.sampling_rate, h.hop_size, h.win_size,
|
|
h.fmin, h.fmax)
|
|
sw.add_figure('generated/y_hat_spec_{}'.format(j),
|
|
plot_spectrogram(y_hat_spec.squeeze(0).cpu().numpy()), steps)
|
|
|
|
val_err = val_err_tot / (j+1)
|
|
sw.add_scalar("validation/mel_spec_error", val_err, steps)
|
|
|
|
generator.train()
|
|
|
|
steps += 1
|
|
|
|
scheduler_g.step()
|
|
scheduler_d.step()
|
|
|
|
if rank == 0:
|
|
print('Time taken for epoch {} is {} sec\n'.format(epoch + 1, int(time.time() - start)))
|