mirror of
https://github.com/babysor/MockingBird.git
synced 2024-03-22 13:11:31 +08:00
74a3fc97d0
Need readme
80 lines
2.4 KiB
Python
80 lines
2.4 KiB
Python
import torch
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
from torch.autograd import Function
|
|
|
|
def tile(x, count, dim=0):
|
|
"""
|
|
Tiles x on dimension dim count times.
|
|
"""
|
|
perm = list(range(len(x.size())))
|
|
if dim != 0:
|
|
perm[0], perm[dim] = perm[dim], perm[0]
|
|
x = x.permute(perm).contiguous()
|
|
out_size = list(x.size())
|
|
out_size[0] *= count
|
|
batch = x.size(0)
|
|
x = x.view(batch, -1) \
|
|
.transpose(0, 1) \
|
|
.repeat(count, 1) \
|
|
.transpose(0, 1) \
|
|
.contiguous() \
|
|
.view(*out_size)
|
|
if dim != 0:
|
|
x = x.permute(perm).contiguous()
|
|
return x
|
|
|
|
class Linear(torch.nn.Module):
|
|
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
|
|
super(Linear, self).__init__()
|
|
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
|
|
|
|
torch.nn.init.xavier_uniform_(
|
|
self.linear_layer.weight,
|
|
gain=torch.nn.init.calculate_gain(w_init_gain))
|
|
|
|
def forward(self, x):
|
|
return self.linear_layer(x)
|
|
|
|
class Conv1d(torch.nn.Module):
|
|
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
|
|
padding=None, dilation=1, bias=True, w_init_gain='linear', param=None):
|
|
super(Conv1d, self).__init__()
|
|
if padding is None:
|
|
assert(kernel_size % 2 == 1)
|
|
padding = int(dilation * (kernel_size - 1)/2)
|
|
|
|
self.conv = torch.nn.Conv1d(in_channels, out_channels,
|
|
kernel_size=kernel_size, stride=stride,
|
|
padding=padding, dilation=dilation,
|
|
bias=bias)
|
|
torch.nn.init.xavier_uniform_(
|
|
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain, param=param))
|
|
|
|
def forward(self, x):
|
|
# x: BxDxT
|
|
return self.conv(x)
|
|
|
|
|
|
|
|
def tile(x, count, dim=0):
|
|
"""
|
|
Tiles x on dimension dim count times.
|
|
"""
|
|
perm = list(range(len(x.size())))
|
|
if dim != 0:
|
|
perm[0], perm[dim] = perm[dim], perm[0]
|
|
x = x.permute(perm).contiguous()
|
|
out_size = list(x.size())
|
|
out_size[0] *= count
|
|
batch = x.size(0)
|
|
x = x.view(batch, -1) \
|
|
.transpose(0, 1) \
|
|
.repeat(count, 1) \
|
|
.transpose(0, 1) \
|
|
.contiguous() \
|
|
.view(*out_size)
|
|
if dim != 0:
|
|
x = x.permute(perm).contiguous()
|
|
return x
|