mirror of
https://github.com/babysor/MockingBird.git
synced 2024-03-22 13:11:31 +08:00
74a3fc97d0
Need readme
185 lines
8.0 KiB
Python
185 lines
8.0 KiB
Python
from multiprocess.pool import ThreadPool
|
|
from models.encoder.params_data import *
|
|
from models.encoder.config import librispeech_datasets, anglophone_nationalites
|
|
from datetime import datetime
|
|
from models.encoder import audio
|
|
from pathlib import Path
|
|
from tqdm import tqdm
|
|
import numpy as np
|
|
|
|
|
|
class DatasetLog:
|
|
"""
|
|
Registers metadata about the dataset in a text file.
|
|
"""
|
|
def __init__(self, root, name):
|
|
self.text_file = open(Path(root, "Log_%s.txt" % name.replace("/", "_")), "w")
|
|
self.sample_data = dict()
|
|
|
|
start_time = str(datetime.now().strftime("%A %d %B %Y at %H:%M"))
|
|
self.write_line("Creating dataset %s on %s" % (name, start_time))
|
|
self.write_line("-----")
|
|
self._log_params()
|
|
|
|
def _log_params(self):
|
|
from models.encoder import params_data
|
|
self.write_line("Parameter values:")
|
|
for param_name in (p for p in dir(params_data) if not p.startswith("__")):
|
|
value = getattr(params_data, param_name)
|
|
self.write_line("\t%s: %s" % (param_name, value))
|
|
self.write_line("-----")
|
|
|
|
def write_line(self, line):
|
|
self.text_file.write("%s\n" % line)
|
|
|
|
def add_sample(self, **kwargs):
|
|
for param_name, value in kwargs.items():
|
|
if not param_name in self.sample_data:
|
|
self.sample_data[param_name] = []
|
|
self.sample_data[param_name].append(value)
|
|
|
|
def finalize(self):
|
|
self.write_line("Statistics:")
|
|
for param_name, values in self.sample_data.items():
|
|
self.write_line("\t%s:" % param_name)
|
|
self.write_line("\t\tmin %.3f, max %.3f" % (np.min(values), np.max(values)))
|
|
self.write_line("\t\tmean %.3f, median %.3f" % (np.mean(values), np.median(values)))
|
|
self.write_line("-----")
|
|
end_time = str(datetime.now().strftime("%A %d %B %Y at %H:%M"))
|
|
self.write_line("Finished on %s" % end_time)
|
|
self.text_file.close()
|
|
|
|
|
|
def _init_preprocess_dataset(dataset_name, datasets_root, out_dir) -> (Path, DatasetLog):
|
|
dataset_root = datasets_root.joinpath(dataset_name)
|
|
if not dataset_root.exists():
|
|
print("Couldn\'t find %s, skipping this dataset." % dataset_root)
|
|
return None, None
|
|
return dataset_root, DatasetLog(out_dir, dataset_name)
|
|
|
|
|
|
def _preprocess_speaker_dirs(speaker_dirs, dataset_name, datasets_root, out_dir, extension,
|
|
skip_existing, logger):
|
|
print("%s: Preprocessing data for %d speakers." % (dataset_name, len(speaker_dirs)))
|
|
|
|
# Function to preprocess utterances for one speaker
|
|
def preprocess_speaker(speaker_dir: Path):
|
|
# Give a name to the speaker that includes its dataset
|
|
speaker_name = "_".join(speaker_dir.relative_to(datasets_root).parts)
|
|
|
|
# Create an output directory with that name, as well as a txt file containing a
|
|
# reference to each source file.
|
|
speaker_out_dir = out_dir.joinpath(speaker_name)
|
|
speaker_out_dir.mkdir(exist_ok=True)
|
|
sources_fpath = speaker_out_dir.joinpath("_sources.txt")
|
|
|
|
# There's a possibility that the preprocessing was interrupted earlier, check if
|
|
# there already is a sources file.
|
|
if sources_fpath.exists():
|
|
try:
|
|
with sources_fpath.open("r") as sources_file:
|
|
existing_fnames = {line.split(",")[0] for line in sources_file}
|
|
except:
|
|
existing_fnames = {}
|
|
else:
|
|
existing_fnames = {}
|
|
|
|
# Gather all audio files for that speaker recursively
|
|
sources_file = sources_fpath.open("a" if skip_existing else "w")
|
|
for in_fpath in speaker_dir.glob("**/*.%s" % extension):
|
|
# Check if the target output file already exists
|
|
out_fname = "_".join(in_fpath.relative_to(speaker_dir).parts)
|
|
out_fname = out_fname.replace(".%s" % extension, ".npy")
|
|
if skip_existing and out_fname in existing_fnames:
|
|
continue
|
|
|
|
# Load and preprocess the waveform
|
|
wav = audio.preprocess_wav(in_fpath)
|
|
if len(wav) == 0:
|
|
continue
|
|
|
|
# Create the mel spectrogram, discard those that are too short
|
|
frames = audio.wav_to_mel_spectrogram(wav)
|
|
if len(frames) < partials_n_frames:
|
|
continue
|
|
|
|
out_fpath = speaker_out_dir.joinpath(out_fname)
|
|
np.save(out_fpath, frames)
|
|
logger.add_sample(duration=len(wav) / sampling_rate)
|
|
sources_file.write("%s,%s\n" % (out_fname, in_fpath))
|
|
|
|
sources_file.close()
|
|
|
|
# Process the utterances for each speaker
|
|
with ThreadPool(8) as pool:
|
|
list(tqdm(pool.imap(preprocess_speaker, speaker_dirs), dataset_name, len(speaker_dirs),
|
|
unit="speakers"))
|
|
logger.finalize()
|
|
print("Done preprocessing %s.\n" % dataset_name)
|
|
|
|
def preprocess_aidatatang_200zh(datasets_root: Path, out_dir: Path, skip_existing=False):
|
|
dataset_name = "aidatatang_200zh"
|
|
dataset_root, logger = _init_preprocess_dataset(dataset_name, datasets_root, out_dir)
|
|
if not dataset_root:
|
|
return
|
|
# Preprocess all speakers
|
|
speaker_dirs = list(dataset_root.joinpath("corpus", "train").glob("*"))
|
|
_preprocess_speaker_dirs(speaker_dirs, dataset_name, datasets_root, out_dir, "wav",
|
|
skip_existing, logger)
|
|
|
|
def preprocess_librispeech(datasets_root: Path, out_dir: Path, skip_existing=False):
|
|
for dataset_name in librispeech_datasets["train"]["other"]:
|
|
# Initialize the preprocessing
|
|
dataset_root, logger = _init_preprocess_dataset(dataset_name, datasets_root, out_dir)
|
|
if not dataset_root:
|
|
return
|
|
|
|
# Preprocess all speakers
|
|
speaker_dirs = list(dataset_root.glob("*"))
|
|
_preprocess_speaker_dirs(speaker_dirs, dataset_name, datasets_root, out_dir, "flac",
|
|
skip_existing, logger)
|
|
|
|
|
|
def preprocess_voxceleb1(datasets_root: Path, out_dir: Path, skip_existing=False):
|
|
# Initialize the preprocessing
|
|
dataset_name = "VoxCeleb1"
|
|
dataset_root, logger = _init_preprocess_dataset(dataset_name, datasets_root, out_dir)
|
|
if not dataset_root:
|
|
return
|
|
|
|
# Get the contents of the meta file
|
|
with dataset_root.joinpath("vox1_meta.csv").open("r") as metafile:
|
|
metadata = [line.split("\t") for line in metafile][1:]
|
|
|
|
# Select the ID and the nationality, filter out non-anglophone speakers
|
|
nationalities = {line[0]: line[3] for line in metadata}
|
|
keep_speaker_ids = [speaker_id for speaker_id, nationality in nationalities.items() if
|
|
nationality.lower() in anglophone_nationalites]
|
|
print("VoxCeleb1: using samples from %d (presumed anglophone) speakers out of %d." %
|
|
(len(keep_speaker_ids), len(nationalities)))
|
|
|
|
# Get the speaker directories for anglophone speakers only
|
|
speaker_dirs = dataset_root.joinpath("wav").glob("*")
|
|
speaker_dirs = [speaker_dir for speaker_dir in speaker_dirs if
|
|
speaker_dir.name in keep_speaker_ids]
|
|
print("VoxCeleb1: found %d anglophone speakers on the disk, %d missing (this is normal)." %
|
|
(len(speaker_dirs), len(keep_speaker_ids) - len(speaker_dirs)))
|
|
|
|
# Preprocess all speakers
|
|
_preprocess_speaker_dirs(speaker_dirs, dataset_name, datasets_root, out_dir, "wav",
|
|
skip_existing, logger)
|
|
|
|
|
|
def preprocess_voxceleb2(datasets_root: Path, out_dir: Path, skip_existing=False):
|
|
# Initialize the preprocessing
|
|
dataset_name = "VoxCeleb2"
|
|
dataset_root, logger = _init_preprocess_dataset(dataset_name, datasets_root, out_dir)
|
|
if not dataset_root:
|
|
return
|
|
|
|
# Get the speaker directories
|
|
# Preprocess all speakers
|
|
speaker_dirs = list(dataset_root.joinpath("dev", "aac").glob("*"))
|
|
_preprocess_speaker_dirs(speaker_dirs, dataset_name, datasets_root, out_dir, "m4a",
|
|
skip_existing, logger)
|