mirror of
https://github.com/babysor/MockingBird.git
synced 2024-03-22 13:11:31 +08:00
178 lines
6.5 KiB
Python
178 lines
6.5 KiB
Python
from encoder.data_objects.speaker_verification_dataset import SpeakerVerificationDataset
|
|
from datetime import datetime
|
|
from time import perf_counter as timer
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
# import webbrowser
|
|
import visdom
|
|
import umap
|
|
|
|
colormap = np.array([
|
|
[76, 255, 0],
|
|
[0, 127, 70],
|
|
[255, 0, 0],
|
|
[255, 217, 38],
|
|
[0, 135, 255],
|
|
[165, 0, 165],
|
|
[255, 167, 255],
|
|
[0, 255, 255],
|
|
[255, 96, 38],
|
|
[142, 76, 0],
|
|
[33, 0, 127],
|
|
[0, 0, 0],
|
|
[183, 183, 183],
|
|
], dtype=np.float) / 255
|
|
|
|
|
|
class Visualizations:
|
|
def __init__(self, env_name=None, update_every=10, server="http://localhost", disabled=False):
|
|
# Tracking data
|
|
self.last_update_timestamp = timer()
|
|
self.update_every = update_every
|
|
self.step_times = []
|
|
self.losses = []
|
|
self.eers = []
|
|
print("Updating the visualizations every %d steps." % update_every)
|
|
|
|
# If visdom is disabled TODO: use a better paradigm for that
|
|
self.disabled = disabled
|
|
if self.disabled:
|
|
return
|
|
|
|
# Set the environment name
|
|
now = str(datetime.now().strftime("%d-%m %Hh%M"))
|
|
if env_name is None:
|
|
self.env_name = now
|
|
else:
|
|
self.env_name = "%s (%s)" % (env_name, now)
|
|
|
|
# Connect to visdom and open the corresponding window in the browser
|
|
try:
|
|
self.vis = visdom.Visdom(server, env=self.env_name, raise_exceptions=True)
|
|
except ConnectionError:
|
|
raise Exception("No visdom server detected. Run the command \"visdom\" in your CLI to "
|
|
"start it.")
|
|
# webbrowser.open("http://localhost:8097/env/" + self.env_name)
|
|
|
|
# Create the windows
|
|
self.loss_win = None
|
|
self.eer_win = None
|
|
# self.lr_win = None
|
|
self.implementation_win = None
|
|
self.projection_win = None
|
|
self.implementation_string = ""
|
|
|
|
def log_params(self):
|
|
if self.disabled:
|
|
return
|
|
from encoder import params_data
|
|
from encoder import params_model
|
|
param_string = "<b>Model parameters</b>:<br>"
|
|
for param_name in (p for p in dir(params_model) if not p.startswith("__")):
|
|
value = getattr(params_model, param_name)
|
|
param_string += "\t%s: %s<br>" % (param_name, value)
|
|
param_string += "<b>Data parameters</b>:<br>"
|
|
for param_name in (p for p in dir(params_data) if not p.startswith("__")):
|
|
value = getattr(params_data, param_name)
|
|
param_string += "\t%s: %s<br>" % (param_name, value)
|
|
self.vis.text(param_string, opts={"title": "Parameters"})
|
|
|
|
def log_dataset(self, dataset: SpeakerVerificationDataset):
|
|
if self.disabled:
|
|
return
|
|
dataset_string = ""
|
|
dataset_string += "<b>Speakers</b>: %s\n" % len(dataset.speakers)
|
|
dataset_string += "\n" + dataset.get_logs()
|
|
dataset_string = dataset_string.replace("\n", "<br>")
|
|
self.vis.text(dataset_string, opts={"title": "Dataset"})
|
|
|
|
def log_implementation(self, params):
|
|
if self.disabled:
|
|
return
|
|
implementation_string = ""
|
|
for param, value in params.items():
|
|
implementation_string += "<b>%s</b>: %s\n" % (param, value)
|
|
implementation_string = implementation_string.replace("\n", "<br>")
|
|
self.implementation_string = implementation_string
|
|
self.implementation_win = self.vis.text(
|
|
implementation_string,
|
|
opts={"title": "Training implementation"}
|
|
)
|
|
|
|
def update(self, loss, eer, step):
|
|
# Update the tracking data
|
|
now = timer()
|
|
self.step_times.append(1000 * (now - self.last_update_timestamp))
|
|
self.last_update_timestamp = now
|
|
self.losses.append(loss)
|
|
self.eers.append(eer)
|
|
print(".", end="")
|
|
|
|
# Update the plots every <update_every> steps
|
|
if step % self.update_every != 0:
|
|
return
|
|
time_string = "Step time: mean: %5dms std: %5dms" % \
|
|
(int(np.mean(self.step_times)), int(np.std(self.step_times)))
|
|
print("\nStep %6d Loss: %.4f EER: %.4f %s" %
|
|
(step, np.mean(self.losses), np.mean(self.eers), time_string))
|
|
if not self.disabled:
|
|
self.loss_win = self.vis.line(
|
|
[np.mean(self.losses)],
|
|
[step],
|
|
win=self.loss_win,
|
|
update="append" if self.loss_win else None,
|
|
opts=dict(
|
|
legend=["Avg. loss"],
|
|
xlabel="Step",
|
|
ylabel="Loss",
|
|
title="Loss",
|
|
)
|
|
)
|
|
self.eer_win = self.vis.line(
|
|
[np.mean(self.eers)],
|
|
[step],
|
|
win=self.eer_win,
|
|
update="append" if self.eer_win else None,
|
|
opts=dict(
|
|
legend=["Avg. EER"],
|
|
xlabel="Step",
|
|
ylabel="EER",
|
|
title="Equal error rate"
|
|
)
|
|
)
|
|
if self.implementation_win is not None:
|
|
self.vis.text(
|
|
self.implementation_string + ("<b>%s</b>" % time_string),
|
|
win=self.implementation_win,
|
|
opts={"title": "Training implementation"},
|
|
)
|
|
|
|
# Reset the tracking
|
|
self.losses.clear()
|
|
self.eers.clear()
|
|
self.step_times.clear()
|
|
|
|
def draw_projections(self, embeds, utterances_per_speaker, step, out_fpath=None,
|
|
max_speakers=10):
|
|
max_speakers = min(max_speakers, len(colormap))
|
|
embeds = embeds[:max_speakers * utterances_per_speaker]
|
|
|
|
n_speakers = len(embeds) // utterances_per_speaker
|
|
ground_truth = np.repeat(np.arange(n_speakers), utterances_per_speaker)
|
|
colors = [colormap[i] for i in ground_truth]
|
|
|
|
reducer = umap.UMAP()
|
|
projected = reducer.fit_transform(embeds)
|
|
plt.scatter(projected[:, 0], projected[:, 1], c=colors)
|
|
plt.gca().set_aspect("equal", "datalim")
|
|
plt.title("UMAP projection (step %d)" % step)
|
|
if not self.disabled:
|
|
self.projection_win = self.vis.matplot(plt, win=self.projection_win)
|
|
if out_fpath is not None:
|
|
plt.savefig(out_fpath)
|
|
plt.clf()
|
|
|
|
def save(self):
|
|
if not self.disabled:
|
|
self.vis.save([self.env_name])
|
|
|