mirror of
https://github.com/babysor/MockingBird.git
synced 2024-03-22 13:11:31 +08:00
ad22997614
修复了一些参数传递造成的问题,把过时的torch.nn.functional.tanh()改成了torch.tanh()
207 lines
7.6 KiB
Python
207 lines
7.6 KiB
Python
import librosa
|
|
import librosa.filters
|
|
import numpy as np
|
|
from scipy import signal
|
|
from scipy.io import wavfile
|
|
import soundfile as sf
|
|
|
|
|
|
def load_wav(path, sr):
|
|
return librosa.core.load(path, sr=sr)[0]
|
|
|
|
def save_wav(wav, path, sr):
|
|
wav *= 32767 / max(0.01, np.max(np.abs(wav)))
|
|
#proposed by @dsmiller
|
|
wavfile.write(path, sr, wav.astype(np.int16))
|
|
|
|
def save_wavenet_wav(wav, path, sr):
|
|
sf.write(path, wav.astype(np.float32), sr)
|
|
|
|
def preemphasis(wav, k, preemphasize=True):
|
|
if preemphasize:
|
|
return signal.lfilter([1, -k], [1], wav)
|
|
return wav
|
|
|
|
def inv_preemphasis(wav, k, inv_preemphasize=True):
|
|
if inv_preemphasize:
|
|
return signal.lfilter([1], [1, -k], wav)
|
|
return wav
|
|
|
|
#From https://github.com/r9y9/wavenet_vocoder/blob/master/audio.py
|
|
def start_and_end_indices(quantized, silence_threshold=2):
|
|
for start in range(quantized.size):
|
|
if abs(quantized[start] - 127) > silence_threshold:
|
|
break
|
|
for end in range(quantized.size - 1, 1, -1):
|
|
if abs(quantized[end] - 127) > silence_threshold:
|
|
break
|
|
|
|
assert abs(quantized[start] - 127) > silence_threshold
|
|
assert abs(quantized[end] - 127) > silence_threshold
|
|
|
|
return start, end
|
|
|
|
def get_hop_size(hparams):
|
|
hop_size = hparams.hop_size
|
|
if hop_size is None:
|
|
assert hparams.frame_shift_ms is not None
|
|
hop_size = int(hparams.frame_shift_ms / 1000 * hparams.sample_rate)
|
|
return hop_size
|
|
|
|
def linearspectrogram(wav, hparams):
|
|
D = _stft(preemphasis(wav, hparams.preemphasis, hparams.preemphasize), hparams)
|
|
S = _amp_to_db(np.abs(D), hparams) - hparams.ref_level_db
|
|
|
|
if hparams.signal_normalization:
|
|
return _normalize(S, hparams)
|
|
return S
|
|
|
|
def melspectrogram(wav, hparams):
|
|
D = _stft(preemphasis(wav, hparams.preemphasis, hparams.preemphasize), hparams)
|
|
S = _amp_to_db(_linear_to_mel(np.abs(D), hparams), hparams) - hparams.ref_level_db
|
|
|
|
if hparams.signal_normalization:
|
|
return _normalize(S, hparams)
|
|
return S
|
|
|
|
def inv_linear_spectrogram(linear_spectrogram, hparams):
|
|
"""Converts linear spectrogram to waveform using librosa"""
|
|
if hparams.signal_normalization:
|
|
D = _denormalize(linear_spectrogram, hparams)
|
|
else:
|
|
D = linear_spectrogram
|
|
|
|
S = _db_to_amp(D + hparams.ref_level_db) #Convert back to linear
|
|
|
|
if hparams.use_lws:
|
|
processor = _lws_processor(hparams)
|
|
D = processor.run_lws(S.astype(np.float64).T ** hparams.power)
|
|
y = processor.istft(D).astype(np.float32)
|
|
return inv_preemphasis(y, hparams.preemphasis, hparams.preemphasize)
|
|
else:
|
|
return inv_preemphasis(_griffin_lim(S ** hparams.power, hparams), hparams.preemphasis, hparams.preemphasize)
|
|
|
|
def inv_mel_spectrogram(mel_spectrogram, hparams):
|
|
"""Converts mel spectrogram to waveform using librosa"""
|
|
if hparams.signal_normalization:
|
|
D = _denormalize(mel_spectrogram, hparams)
|
|
else:
|
|
D = mel_spectrogram
|
|
|
|
S = _mel_to_linear(_db_to_amp(D + hparams.ref_level_db), hparams) # Convert back to linear
|
|
|
|
if hparams.use_lws:
|
|
processor = _lws_processor(hparams)
|
|
D = processor.run_lws(S.astype(np.float64).T ** hparams.power)
|
|
y = processor.istft(D).astype(np.float32)
|
|
return inv_preemphasis(y, hparams.preemphasis, hparams.preemphasize)
|
|
else:
|
|
return inv_preemphasis(_griffin_lim(S ** hparams.power, hparams), hparams.preemphasis, hparams.preemphasize)
|
|
|
|
def _lws_processor(hparams):
|
|
import lws
|
|
return lws.lws(hparams.n_fft, get_hop_size(hparams), fftsize=hparams.win_size, mode="speech")
|
|
|
|
def _griffin_lim(S, hparams):
|
|
"""librosa implementation of Griffin-Lim
|
|
Based on https://github.com/librosa/librosa/issues/434
|
|
"""
|
|
angles = np.exp(2j * np.pi * np.random.rand(*S.shape))
|
|
S_complex = np.abs(S).astype(np.complex)
|
|
y = _istft(S_complex * angles, hparams)
|
|
for i in range(hparams.griffin_lim_iters):
|
|
angles = np.exp(1j * np.angle(_stft(y, hparams)))
|
|
y = _istft(S_complex * angles, hparams)
|
|
return y
|
|
|
|
def _stft(y, hparams):
|
|
if hparams.use_lws:
|
|
return _lws_processor(hparams).stft(y).T
|
|
else:
|
|
return librosa.stft(y=y, n_fft=hparams.n_fft, hop_length=get_hop_size(hparams), win_length=hparams.win_size)
|
|
|
|
def _istft(y, hparams):
|
|
return librosa.istft(y, hop_length=get_hop_size(hparams), win_length=hparams.win_size)
|
|
|
|
##########################################################
|
|
#Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!)
|
|
def num_frames(length, fsize, fshift):
|
|
"""Compute number of time frames of spectrogram
|
|
"""
|
|
pad = (fsize - fshift)
|
|
if length % fshift == 0:
|
|
M = (length + pad * 2 - fsize) // fshift + 1
|
|
else:
|
|
M = (length + pad * 2 - fsize) // fshift + 2
|
|
return M
|
|
|
|
|
|
def pad_lr(x, fsize, fshift):
|
|
"""Compute left and right padding
|
|
"""
|
|
M = num_frames(len(x), fsize, fshift)
|
|
pad = (fsize - fshift)
|
|
T = len(x) + 2 * pad
|
|
r = (M - 1) * fshift + fsize - T
|
|
return pad, pad + r
|
|
##########################################################
|
|
#Librosa correct padding
|
|
def librosa_pad_lr(x, fsize, fshift):
|
|
return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0]
|
|
|
|
# Conversions
|
|
_mel_basis = None
|
|
_inv_mel_basis = None
|
|
|
|
def _linear_to_mel(spectogram, hparams):
|
|
global _mel_basis
|
|
if _mel_basis is None:
|
|
_mel_basis = _build_mel_basis(hparams)
|
|
return np.dot(_mel_basis, spectogram)
|
|
|
|
def _mel_to_linear(mel_spectrogram, hparams):
|
|
global _inv_mel_basis
|
|
if _inv_mel_basis is None:
|
|
_inv_mel_basis = np.linalg.pinv(_build_mel_basis(hparams))
|
|
return np.maximum(1e-10, np.dot(_inv_mel_basis, mel_spectrogram))
|
|
|
|
def _build_mel_basis(hparams):
|
|
assert hparams.fmax <= hparams.sample_rate // 2
|
|
return librosa.filters.mel(sr=hparams.sample_rate, n_fft=hparams.n_fft, n_mels=hparams.num_mels,
|
|
fmin=hparams.fmin, fmax=hparams.fmax)
|
|
|
|
def _amp_to_db(x, hparams):
|
|
min_level = np.exp(hparams.min_level_db / 20 * np.log(10))
|
|
return 20 * np.log10(np.maximum(min_level, x))
|
|
|
|
def _db_to_amp(x):
|
|
return np.power(10.0, (x) * 0.05)
|
|
|
|
def _normalize(S, hparams):
|
|
if hparams.allow_clipping_in_normalization:
|
|
if hparams.symmetric_mels:
|
|
return np.clip((2 * hparams.max_abs_value) * ((S - hparams.min_level_db) / (-hparams.min_level_db)) - hparams.max_abs_value,
|
|
-hparams.max_abs_value, hparams.max_abs_value)
|
|
else:
|
|
return np.clip(hparams.max_abs_value * ((S - hparams.min_level_db) / (-hparams.min_level_db)), 0, hparams.max_abs_value)
|
|
|
|
assert S.max() <= 0 and S.min() - hparams.min_level_db >= 0
|
|
if hparams.symmetric_mels:
|
|
return (2 * hparams.max_abs_value) * ((S - hparams.min_level_db) / (-hparams.min_level_db)) - hparams.max_abs_value
|
|
else:
|
|
return hparams.max_abs_value * ((S - hparams.min_level_db) / (-hparams.min_level_db))
|
|
|
|
def _denormalize(D, hparams):
|
|
if hparams.allow_clipping_in_normalization:
|
|
if hparams.symmetric_mels:
|
|
return (((np.clip(D, -hparams.max_abs_value,
|
|
hparams.max_abs_value) + hparams.max_abs_value) * -hparams.min_level_db / (2 * hparams.max_abs_value))
|
|
+ hparams.min_level_db)
|
|
else:
|
|
return ((np.clip(D, 0, hparams.max_abs_value) * -hparams.min_level_db / hparams.max_abs_value) + hparams.min_level_db)
|
|
|
|
if hparams.symmetric_mels:
|
|
return (((D + hparams.max_abs_value) * -hparams.min_level_db / (2 * hparams.max_abs_value)) + hparams.min_level_db)
|
|
else:
|
|
return ((D * -hparams.min_level_db / hparams.max_abs_value) + hparams.min_level_db)
|