MockingBird/ppg2mel/utils/basic_layers.py
Vega b617a87ee4
Init ppg extractor and ppg2mel (#375)
* Init  ppg extractor and ppg2mel

* add preprocess and training

* FIx known issues

* Update __init__.py

Allow to gen audio

* Fix length issue

* Fix bug of preparing fid

* Fix sample issues

* Add UI usage of PPG-vc
2022-03-03 23:38:12 +08:00

80 lines
2.4 KiB
Python

import torch
from torch import nn
from torch.nn import functional as F
from torch.autograd import Function
def tile(x, count, dim=0):
"""
Tiles x on dimension dim count times.
"""
perm = list(range(len(x.size())))
if dim != 0:
perm[0], perm[dim] = perm[dim], perm[0]
x = x.permute(perm).contiguous()
out_size = list(x.size())
out_size[0] *= count
batch = x.size(0)
x = x.view(batch, -1) \
.transpose(0, 1) \
.repeat(count, 1) \
.transpose(0, 1) \
.contiguous() \
.view(*out_size)
if dim != 0:
x = x.permute(perm).contiguous()
return x
class Linear(torch.nn.Module):
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
super(Linear, self).__init__()
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
torch.nn.init.xavier_uniform_(
self.linear_layer.weight,
gain=torch.nn.init.calculate_gain(w_init_gain))
def forward(self, x):
return self.linear_layer(x)
class Conv1d(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
padding=None, dilation=1, bias=True, w_init_gain='linear', param=None):
super(Conv1d, self).__init__()
if padding is None:
assert(kernel_size % 2 == 1)
padding = int(dilation * (kernel_size - 1)/2)
self.conv = torch.nn.Conv1d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation,
bias=bias)
torch.nn.init.xavier_uniform_(
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain, param=param))
def forward(self, x):
# x: BxDxT
return self.conv(x)
def tile(x, count, dim=0):
"""
Tiles x on dimension dim count times.
"""
perm = list(range(len(x.size())))
if dim != 0:
perm[0], perm[dim] = perm[dim], perm[0]
x = x.permute(perm).contiguous()
out_size = list(x.size())
out_size[0] *= count
batch = x.size(0)
x = x.view(batch, -1) \
.transpose(0, 1) \
.repeat(count, 1) \
.transpose(0, 1) \
.contiguous() \
.view(*out_size)
if dim != 0:
x = x.permute(perm).contiguous()
return x