mirror of
https://github.com/babysor/MockingBird.git
synced 2024-03-22 13:11:31 +08:00
b617a87ee4
* Init ppg extractor and ppg2mel * add preprocess and training * FIx known issues * Update __init__.py Allow to gen audio * Fix length issue * Fix bug of preparing fid * Fix sample issues * Add UI usage of PPG-vc
263 lines
9.9 KiB
Python
263 lines
9.9 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
# Copyright 2019 Shigeki Karita
|
|
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
|
|
|
"""Encoder definition."""
|
|
|
|
import logging
|
|
import torch
|
|
from typing import Callable
|
|
from typing import Collection
|
|
from typing import Dict
|
|
from typing import List
|
|
from typing import Optional
|
|
from typing import Tuple
|
|
|
|
from .convolution import ConvolutionModule
|
|
from .encoder_layer import EncoderLayer
|
|
from ..nets_utils import get_activation, make_pad_mask
|
|
from .vgg import VGG2L
|
|
from .attention import MultiHeadedAttention, RelPositionMultiHeadedAttention
|
|
from .embedding import PositionalEncoding, ScaledPositionalEncoding, RelPositionalEncoding
|
|
from .layer_norm import LayerNorm
|
|
from .multi_layer_conv import Conv1dLinear, MultiLayeredConv1d
|
|
from .positionwise_feed_forward import PositionwiseFeedForward
|
|
from .repeat import repeat
|
|
from .subsampling import Conv2dNoSubsampling, Conv2dSubsampling
|
|
|
|
|
|
class ConformerEncoder(torch.nn.Module):
|
|
"""Conformer encoder module.
|
|
|
|
:param int idim: input dim
|
|
:param int attention_dim: dimention of attention
|
|
:param int attention_heads: the number of heads of multi head attention
|
|
:param int linear_units: the number of units of position-wise feed forward
|
|
:param int num_blocks: the number of decoder blocks
|
|
:param float dropout_rate: dropout rate
|
|
:param float attention_dropout_rate: dropout rate in attention
|
|
:param float positional_dropout_rate: dropout rate after adding positional encoding
|
|
:param str or torch.nn.Module input_layer: input layer type
|
|
:param bool normalize_before: whether to use layer_norm before the first block
|
|
:param bool concat_after: whether to concat attention layer's input and output
|
|
if True, additional linear will be applied.
|
|
i.e. x -> x + linear(concat(x, att(x)))
|
|
if False, no additional linear will be applied. i.e. x -> x + att(x)
|
|
:param str positionwise_layer_type: linear of conv1d
|
|
:param int positionwise_conv_kernel_size: kernel size of positionwise conv1d layer
|
|
:param str encoder_pos_enc_layer_type: encoder positional encoding layer type
|
|
:param str encoder_attn_layer_type: encoder attention layer type
|
|
:param str activation_type: encoder activation function type
|
|
:param bool macaron_style: whether to use macaron style for positionwise layer
|
|
:param bool use_cnn_module: whether to use convolution module
|
|
:param int cnn_module_kernel: kernerl size of convolution module
|
|
:param int padding_idx: padding_idx for input_layer=embed
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
input_size,
|
|
attention_dim=256,
|
|
attention_heads=4,
|
|
linear_units=2048,
|
|
num_blocks=6,
|
|
dropout_rate=0.1,
|
|
positional_dropout_rate=0.1,
|
|
attention_dropout_rate=0.0,
|
|
input_layer="conv2d",
|
|
normalize_before=True,
|
|
concat_after=False,
|
|
positionwise_layer_type="linear",
|
|
positionwise_conv_kernel_size=1,
|
|
macaron_style=False,
|
|
pos_enc_layer_type="abs_pos",
|
|
selfattention_layer_type="selfattn",
|
|
activation_type="swish",
|
|
use_cnn_module=False,
|
|
cnn_module_kernel=31,
|
|
padding_idx=-1,
|
|
no_subsample=False,
|
|
subsample_by_2=False,
|
|
):
|
|
"""Construct an Encoder object."""
|
|
super().__init__()
|
|
|
|
self._output_size = attention_dim
|
|
idim = input_size
|
|
|
|
activation = get_activation(activation_type)
|
|
if pos_enc_layer_type == "abs_pos":
|
|
pos_enc_class = PositionalEncoding
|
|
elif pos_enc_layer_type == "scaled_abs_pos":
|
|
pos_enc_class = ScaledPositionalEncoding
|
|
elif pos_enc_layer_type == "rel_pos":
|
|
assert selfattention_layer_type == "rel_selfattn"
|
|
pos_enc_class = RelPositionalEncoding
|
|
else:
|
|
raise ValueError("unknown pos_enc_layer: " + pos_enc_layer_type)
|
|
|
|
if input_layer == "linear":
|
|
self.embed = torch.nn.Sequential(
|
|
torch.nn.Linear(idim, attention_dim),
|
|
torch.nn.LayerNorm(attention_dim),
|
|
torch.nn.Dropout(dropout_rate),
|
|
pos_enc_class(attention_dim, positional_dropout_rate),
|
|
)
|
|
elif input_layer == "conv2d":
|
|
logging.info("Encoder input layer type: conv2d")
|
|
if no_subsample:
|
|
self.embed = Conv2dNoSubsampling(
|
|
idim,
|
|
attention_dim,
|
|
dropout_rate,
|
|
pos_enc_class(attention_dim, positional_dropout_rate),
|
|
)
|
|
else:
|
|
self.embed = Conv2dSubsampling(
|
|
idim,
|
|
attention_dim,
|
|
dropout_rate,
|
|
pos_enc_class(attention_dim, positional_dropout_rate),
|
|
subsample_by_2, # NOTE(Sx): added by songxiang
|
|
)
|
|
elif input_layer == "vgg2l":
|
|
self.embed = VGG2L(idim, attention_dim)
|
|
elif input_layer == "embed":
|
|
self.embed = torch.nn.Sequential(
|
|
torch.nn.Embedding(idim, attention_dim, padding_idx=padding_idx),
|
|
pos_enc_class(attention_dim, positional_dropout_rate),
|
|
)
|
|
elif isinstance(input_layer, torch.nn.Module):
|
|
self.embed = torch.nn.Sequential(
|
|
input_layer,
|
|
pos_enc_class(attention_dim, positional_dropout_rate),
|
|
)
|
|
elif input_layer is None:
|
|
self.embed = torch.nn.Sequential(
|
|
pos_enc_class(attention_dim, positional_dropout_rate)
|
|
)
|
|
else:
|
|
raise ValueError("unknown input_layer: " + input_layer)
|
|
self.normalize_before = normalize_before
|
|
if positionwise_layer_type == "linear":
|
|
positionwise_layer = PositionwiseFeedForward
|
|
positionwise_layer_args = (
|
|
attention_dim,
|
|
linear_units,
|
|
dropout_rate,
|
|
activation,
|
|
)
|
|
elif positionwise_layer_type == "conv1d":
|
|
positionwise_layer = MultiLayeredConv1d
|
|
positionwise_layer_args = (
|
|
attention_dim,
|
|
linear_units,
|
|
positionwise_conv_kernel_size,
|
|
dropout_rate,
|
|
)
|
|
elif positionwise_layer_type == "conv1d-linear":
|
|
positionwise_layer = Conv1dLinear
|
|
positionwise_layer_args = (
|
|
attention_dim,
|
|
linear_units,
|
|
positionwise_conv_kernel_size,
|
|
dropout_rate,
|
|
)
|
|
else:
|
|
raise NotImplementedError("Support only linear or conv1d.")
|
|
|
|
if selfattention_layer_type == "selfattn":
|
|
logging.info("encoder self-attention layer type = self-attention")
|
|
encoder_selfattn_layer = MultiHeadedAttention
|
|
encoder_selfattn_layer_args = (
|
|
attention_heads,
|
|
attention_dim,
|
|
attention_dropout_rate,
|
|
)
|
|
elif selfattention_layer_type == "rel_selfattn":
|
|
assert pos_enc_layer_type == "rel_pos"
|
|
encoder_selfattn_layer = RelPositionMultiHeadedAttention
|
|
encoder_selfattn_layer_args = (
|
|
attention_heads,
|
|
attention_dim,
|
|
attention_dropout_rate,
|
|
)
|
|
else:
|
|
raise ValueError("unknown encoder_attn_layer: " + selfattention_layer_type)
|
|
|
|
convolution_layer = ConvolutionModule
|
|
convolution_layer_args = (attention_dim, cnn_module_kernel, activation)
|
|
|
|
self.encoders = repeat(
|
|
num_blocks,
|
|
lambda lnum: EncoderLayer(
|
|
attention_dim,
|
|
encoder_selfattn_layer(*encoder_selfattn_layer_args),
|
|
positionwise_layer(*positionwise_layer_args),
|
|
positionwise_layer(*positionwise_layer_args) if macaron_style else None,
|
|
convolution_layer(*convolution_layer_args) if use_cnn_module else None,
|
|
dropout_rate,
|
|
normalize_before,
|
|
concat_after,
|
|
),
|
|
)
|
|
if self.normalize_before:
|
|
self.after_norm = LayerNorm(attention_dim)
|
|
|
|
def output_size(self) -> int:
|
|
return self._output_size
|
|
|
|
def forward(
|
|
self,
|
|
xs_pad: torch.Tensor,
|
|
ilens: torch.Tensor,
|
|
prev_states: torch.Tensor = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
|
|
"""
|
|
Args:
|
|
xs_pad: input tensor (B, L, D)
|
|
ilens: input lengths (B)
|
|
prev_states: Not to be used now.
|
|
Returns:
|
|
Position embedded tensor and mask
|
|
"""
|
|
masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device)
|
|
|
|
if isinstance(self.embed, (Conv2dSubsampling, Conv2dNoSubsampling, VGG2L)):
|
|
# print(xs_pad.shape)
|
|
xs_pad, masks = self.embed(xs_pad, masks)
|
|
# print(xs_pad[0].size())
|
|
else:
|
|
xs_pad = self.embed(xs_pad)
|
|
xs_pad, masks = self.encoders(xs_pad, masks)
|
|
if isinstance(xs_pad, tuple):
|
|
xs_pad = xs_pad[0]
|
|
|
|
if self.normalize_before:
|
|
xs_pad = self.after_norm(xs_pad)
|
|
olens = masks.squeeze(1).sum(1)
|
|
return xs_pad, olens, None
|
|
|
|
# def forward(self, xs, masks):
|
|
# """Encode input sequence.
|
|
|
|
# :param torch.Tensor xs: input tensor
|
|
# :param torch.Tensor masks: input mask
|
|
# :return: position embedded tensor and mask
|
|
# :rtype Tuple[torch.Tensor, torch.Tensor]:
|
|
# """
|
|
# if isinstance(self.embed, (Conv2dSubsampling, VGG2L)):
|
|
# xs, masks = self.embed(xs, masks)
|
|
# else:
|
|
# xs = self.embed(xs)
|
|
|
|
# xs, masks = self.encoders(xs, masks)
|
|
# if isinstance(xs, tuple):
|
|
# xs = xs[0]
|
|
|
|
# if self.normalize_before:
|
|
# xs = self.after_norm(xs)
|
|
# return xs, masks
|