mirror of
https://github.com/babysor/MockingBird.git
synced 2024-03-22 13:11:31 +08:00
b617a87ee4
* Init ppg extractor and ppg2mel * add preprocess and training * FIx known issues * Update __init__.py Allow to gen audio * Fix length issue * Fix bug of preparing fid * Fix sample issues * Add UI usage of PPG-vc
65 lines
1.8 KiB
Python
65 lines
1.8 KiB
Python
from vocoder.wavernn.models.fatchord_version import WaveRNN
|
|
from vocoder.wavernn import hparams as hp
|
|
import torch
|
|
|
|
|
|
_model = None # type: WaveRNN
|
|
|
|
def load_model(weights_fpath, verbose=True):
|
|
global _model, _device
|
|
|
|
if verbose:
|
|
print("Building Wave-RNN")
|
|
_model = WaveRNN(
|
|
rnn_dims=hp.voc_rnn_dims,
|
|
fc_dims=hp.voc_fc_dims,
|
|
bits=hp.bits,
|
|
pad=hp.voc_pad,
|
|
upsample_factors=hp.voc_upsample_factors,
|
|
feat_dims=hp.num_mels,
|
|
compute_dims=hp.voc_compute_dims,
|
|
res_out_dims=hp.voc_res_out_dims,
|
|
res_blocks=hp.voc_res_blocks,
|
|
hop_length=hp.hop_length,
|
|
sample_rate=hp.sample_rate,
|
|
mode=hp.voc_mode
|
|
)
|
|
|
|
if torch.cuda.is_available():
|
|
_model = _model.cuda()
|
|
_device = torch.device('cuda')
|
|
else:
|
|
_device = torch.device('cpu')
|
|
|
|
if verbose:
|
|
print("Loading model weights at %s" % weights_fpath)
|
|
checkpoint = torch.load(weights_fpath, _device)
|
|
_model.load_state_dict(checkpoint['model_state'])
|
|
_model.eval()
|
|
|
|
|
|
def is_loaded():
|
|
return _model is not None
|
|
|
|
|
|
def infer_waveform(mel, normalize=True, batched=True, target=8000, overlap=800,
|
|
progress_callback=None):
|
|
"""
|
|
Infers the waveform of a mel spectrogram output by the synthesizer (the format must match
|
|
that of the synthesizer!)
|
|
|
|
:param normalize:
|
|
:param batched:
|
|
:param target:
|
|
:param overlap:
|
|
:return:
|
|
"""
|
|
if _model is None:
|
|
raise Exception("Please load Wave-RNN in memory before using it")
|
|
|
|
if normalize:
|
|
mel = mel / hp.mel_max_abs_value
|
|
mel = torch.from_numpy(mel[None, ...])
|
|
wav = _model.generate(mel, batched, target, overlap, hp.mu_law, progress_callback)
|
|
return wav, hp.sample_rate
|