mirror of
https://github.com/babysor/MockingBird.git
synced 2024-03-22 13:11:31 +08:00
86ea11affd
* 替换了vocoder * 修改了vocoder_train * 减谱法 * 美化UI;语音增强;MFCC特征可视化 * 修复了训练fregan模型时的报错 * 增加了可以分析音频特征的独立文件 * 现已支持Fre-GAN声码器的训练 * 修复了训练fregan时保存模型的BUG * 删除了无用的文件 * 优化了识别声码器模型的方式
71 lines
1.7 KiB
Python
71 lines
1.7 KiB
Python
import glob
|
|
import os
|
|
import matplotlib
|
|
import torch
|
|
from torch.nn.utils import weight_norm
|
|
matplotlib.use("Agg")
|
|
import matplotlib.pylab as plt
|
|
import shutil
|
|
|
|
|
|
class AttrDict(dict):
|
|
def __init__(self, *args, **kwargs):
|
|
super(AttrDict, self).__init__(*args, **kwargs)
|
|
self.__dict__ = self
|
|
|
|
|
|
def build_env(config, config_name, path):
|
|
t_path = os.path.join(path, config_name)
|
|
if config != t_path:
|
|
os.makedirs(path, exist_ok=True)
|
|
shutil.copyfile(config, os.path.join(path, config_name))
|
|
|
|
|
|
def plot_spectrogram(spectrogram):
|
|
fig, ax = plt.subplots(figsize=(10, 2))
|
|
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
|
interpolation='none')
|
|
plt.colorbar(im, ax=ax)
|
|
|
|
fig.canvas.draw()
|
|
plt.close()
|
|
|
|
return fig
|
|
|
|
|
|
def init_weights(m, mean=0.0, std=0.01):
|
|
classname = m.__class__.__name__
|
|
if classname.find("Conv") != -1:
|
|
m.weight.data.normal_(mean, std)
|
|
|
|
|
|
def apply_weight_norm(m):
|
|
classname = m.__class__.__name__
|
|
if classname.find("Conv") != -1:
|
|
weight_norm(m)
|
|
|
|
|
|
def get_padding(kernel_size, dilation=1):
|
|
return int((kernel_size*dilation - dilation)/2)
|
|
|
|
|
|
def load_checkpoint(filepath, device):
|
|
assert os.path.isfile(filepath)
|
|
print("Loading '{}'".format(filepath))
|
|
checkpoint_dict = torch.load(filepath, map_location=device)
|
|
print("Complete.")
|
|
return checkpoint_dict
|
|
|
|
|
|
def save_checkpoint(filepath, obj):
|
|
print("Saving checkpoint to {}".format(filepath))
|
|
torch.save(obj, filepath)
|
|
print("Complete.")
|
|
|
|
|
|
def scan_checkpoint(cp_dir, prefix):
|
|
pattern = os.path.join(cp_dir, prefix + '????????')
|
|
cp_list = glob.glob(pattern)
|
|
if len(cp_list) == 0:
|
|
return None
|
|
return sorted(cp_list)[-1] |