mirror of
https://github.com/babysor/MockingBird.git
synced 2024-03-22 13:11:31 +08:00
136 lines
4.9 KiB
Python
136 lines
4.9 KiB
Python
from web.api import api_blueprint
|
|
from pathlib import Path
|
|
from gevent import pywsgi as wsgi
|
|
from flask import Flask, Response, request, render_template
|
|
from synthesizer.inference import Synthesizer
|
|
from encoder import inference as encoder
|
|
from vocoder.hifigan import inference as gan_vocoder
|
|
from vocoder.wavernn import inference as rnn_vocoder
|
|
import numpy as np
|
|
import re
|
|
from scipy.io.wavfile import write
|
|
import librosa
|
|
import io
|
|
import base64
|
|
from flask_cors import CORS
|
|
from flask_wtf import CSRFProtect
|
|
import webbrowser
|
|
|
|
def webApp():
|
|
# Init and load config
|
|
app = Flask(__name__, instance_relative_config=True)
|
|
app.config.from_object("web.config.default")
|
|
app.config['RESTPLUS_MASK_SWAGGER'] = False
|
|
app.register_blueprint(api_blueprint)
|
|
|
|
# CORS(app) #允许跨域,注释掉此行则禁止跨域请求
|
|
csrf = CSRFProtect(app)
|
|
csrf.init_app(app)
|
|
|
|
syn_models_dirt = "synthesizer/saved_models"
|
|
synthesizers = list(Path(syn_models_dirt).glob("**/*.pt"))
|
|
synthesizers_cache = {}
|
|
encoder.load_model(Path("encoder/saved_models/pretrained.pt"))
|
|
rnn_vocoder.load_model(Path("vocoder/saved_models/pretrained/pretrained.pt"))
|
|
gan_vocoder.load_model(Path("vocoder/saved_models/pretrained/g_hifigan.pt"))
|
|
|
|
def pcm2float(sig, dtype='float32'):
|
|
"""Convert PCM signal to floating point with a range from -1 to 1.
|
|
Use dtype='float32' for single precision.
|
|
Parameters
|
|
----------
|
|
sig : array_like
|
|
Input array, must have integral type.
|
|
dtype : data type, optional
|
|
Desired (floating point) data type.
|
|
Returns
|
|
-------
|
|
numpy.ndarray
|
|
Normalized floating point data.
|
|
See Also
|
|
--------
|
|
float2pcm, dtype
|
|
"""
|
|
sig = np.asarray(sig)
|
|
if sig.dtype.kind not in 'iu':
|
|
raise TypeError("'sig' must be an array of integers")
|
|
dtype = np.dtype(dtype)
|
|
if dtype.kind != 'f':
|
|
raise TypeError("'dtype' must be a floating point type")
|
|
|
|
i = np.iinfo(sig.dtype)
|
|
abs_max = 2 ** (i.bits - 1)
|
|
offset = i.min + abs_max
|
|
return (sig.astype(dtype) - offset) / abs_max
|
|
|
|
# Cache for synthesizer
|
|
@csrf.exempt
|
|
@app.route("/api/synthesize", methods=["POST"])
|
|
def synthesize():
|
|
# TODO Implementation with json to support more platform
|
|
# Load synthesizer
|
|
if "synt_path" in request.form:
|
|
synt_path = request.form["synt_path"]
|
|
else:
|
|
synt_path = synthesizers[0]
|
|
print("NO synthsizer is specified, try default first one.")
|
|
if synthesizers_cache.get(synt_path) is None:
|
|
current_synt = Synthesizer(Path(synt_path))
|
|
synthesizers_cache[synt_path] = current_synt
|
|
else:
|
|
current_synt = synthesizers_cache[synt_path]
|
|
print("using synthesizer model: " + str(synt_path))
|
|
# Load input wav
|
|
if "upfile_b64" in request.form:
|
|
wav_base64 = request.form["upfile_b64"]
|
|
wav = base64.b64decode(bytes(wav_base64, 'utf-8'))
|
|
wav = pcm2float(np.frombuffer(wav, dtype=np.int16), dtype=np.float32)
|
|
sample_rate = Synthesizer.sample_rate
|
|
else:
|
|
wav, sample_rate, = librosa.load(request.files['file'])
|
|
write("temp.wav", sample_rate, wav) #Make sure we get the correct wav
|
|
|
|
encoder_wav = encoder.preprocess_wav(wav, sample_rate)
|
|
embed, _, _ = encoder.embed_utterance(encoder_wav, return_partials=True)
|
|
|
|
# Load input text
|
|
texts = filter(None, request.form["text"].split("\n"))
|
|
punctuation = '!,。、,' # punctuate and split/clean text
|
|
processed_texts = []
|
|
for text in texts:
|
|
for processed_text in re.sub(r'[{}]+'.format(punctuation), '\n', text).split('\n'):
|
|
if processed_text:
|
|
processed_texts.append(processed_text.strip())
|
|
texts = processed_texts
|
|
|
|
# synthesize and vocode
|
|
embeds = [embed] * len(texts)
|
|
specs = current_synt.synthesize_spectrograms(texts, embeds)
|
|
spec = np.concatenate(specs, axis=1)
|
|
sample_rate = Synthesizer.sample_rate
|
|
if "vocoder" in request.form and request.form["vocoder"] == "WaveRNN":
|
|
wav, sample_rate = rnn_vocoder.infer_waveform(spec)
|
|
else:
|
|
wav, sample_rate = gan_vocoder.infer_waveform(spec)
|
|
|
|
# Return cooked wav
|
|
out = io.BytesIO()
|
|
write(out, sample_rate, wav.astype(np.float32))
|
|
return Response(out, mimetype="audio/wav")
|
|
|
|
@app.route('/', methods=['GET'])
|
|
def index():
|
|
return render_template("index.html")
|
|
|
|
host = app.config.get("HOST")
|
|
port = app.config.get("PORT")
|
|
web_address = 'http://{}:{}'.format(host, port)
|
|
print(f"Web server:" + web_address)
|
|
webbrowser.open(web_address)
|
|
server = wsgi.WSGIServer((host, port), app)
|
|
server.serve_forever()
|
|
return app
|
|
|
|
if __name__ == "__main__":
|
|
webApp()
|