mirror of
https://github.com/babysor/MockingBird.git
synced 2024-03-22 13:11:31 +08:00
c5d03fb3cb
* Init new GUI * Remove unused codes * Reset layout * Add samples * Make framework to support multiple pages * Add vc mode * Add preprocessing mode * Add training mode * Remove text input in vc mode * Add entry for GUI and revise readme * Move requirement together * Add error raise when no model folder found * Add readme
156 lines
5.4 KiB
Python
156 lines
5.4 KiB
Python
from pydantic import BaseModel, Field
|
||
import os
|
||
from pathlib import Path
|
||
from enum import Enum
|
||
from typing import Any
|
||
import numpy as np
|
||
from utils.load_yaml import HpsYaml
|
||
from utils.util import AttrDict
|
||
import torch
|
||
|
||
# TODO: seperator for *unix systems
|
||
# Constants
|
||
EXT_MODELS_DIRT = "ppg_extractor\\saved_models"
|
||
CONV_MODELS_DIRT = "ppg2mel\\saved_models"
|
||
ENC_MODELS_DIRT = "encoder\\saved_models"
|
||
|
||
|
||
if os.path.isdir(EXT_MODELS_DIRT):
|
||
extractors = Enum('extractors', list((file.name, file) for file in Path(EXT_MODELS_DIRT).glob("**/*.pt")))
|
||
print("Loaded extractor models: " + str(len(extractors)))
|
||
else:
|
||
raise Exception(f"Model folder {EXT_MODELS_DIRT} doesn't exist.")
|
||
|
||
if os.path.isdir(CONV_MODELS_DIRT):
|
||
convertors = Enum('convertors', list((file.name, file) for file in Path(CONV_MODELS_DIRT).glob("**/*.pth")))
|
||
print("Loaded convertor models: " + str(len(convertors)))
|
||
else:
|
||
raise Exception(f"Model folder {CONV_MODELS_DIRT} doesn't exist.")
|
||
|
||
if os.path.isdir(ENC_MODELS_DIRT):
|
||
encoders = Enum('encoders', list((file.name, file) for file in Path(ENC_MODELS_DIRT).glob("**/*.pt")))
|
||
print("Loaded encoders models: " + str(len(encoders)))
|
||
else:
|
||
raise Exception(f"Model folder {ENC_MODELS_DIRT} doesn't exist.")
|
||
|
||
class Model(str, Enum):
|
||
VC_PPG2MEL = "ppg2mel"
|
||
|
||
class Dataset(str, Enum):
|
||
AIDATATANG_200ZH = "aidatatang_200zh"
|
||
AIDATATANG_200ZH_S = "aidatatang_200zh_s"
|
||
|
||
class Input(BaseModel):
|
||
# def render_input_ui(st, input) -> Dict:
|
||
# input["selected_dataset"] = st.selectbox(
|
||
# '选择数据集',
|
||
# ("aidatatang_200zh", "aidatatang_200zh_s")
|
||
# )
|
||
# return input
|
||
model: Model = Field(
|
||
Model.VC_PPG2MEL, title="模型类型",
|
||
)
|
||
# datasets_root: str = Field(
|
||
# ..., alias="预处理数据根目录", description="输入目录(相对/绝对),不适用于ppg2mel模型",
|
||
# format=True,
|
||
# example="..\\trainning_data\\"
|
||
# )
|
||
output_root: str = Field(
|
||
..., alias="输出目录(可选)", description="建议不填,保持默认",
|
||
format=True,
|
||
example=""
|
||
)
|
||
continue_mode: bool = Field(
|
||
True, alias="继续训练模式", description="选择“是”,则从下面选择的模型中继续训练",
|
||
)
|
||
gpu: bool = Field(
|
||
True, alias="GPU训练", description="选择“是”,则使用GPU训练",
|
||
)
|
||
verbose: bool = Field(
|
||
True, alias="打印详情", description="选择“是”,输出更多详情",
|
||
)
|
||
# TODO: Move to hiden fields by default
|
||
convertor: convertors = Field(
|
||
..., alias="转换模型",
|
||
description="选择语音转换模型文件."
|
||
)
|
||
extractor: extractors = Field(
|
||
..., alias="特征提取模型",
|
||
description="选择PPG特征提取模型文件."
|
||
)
|
||
encoder: encoders = Field(
|
||
..., alias="语音编码模型",
|
||
description="选择语音编码模型文件."
|
||
)
|
||
njobs: int = Field(
|
||
8, alias="进程数", description="适用于ppg2mel",
|
||
)
|
||
seed: int = Field(
|
||
default=0, alias="初始随机数", description="适用于ppg2mel",
|
||
)
|
||
model_name: str = Field(
|
||
..., alias="新模型名", description="仅在重新训练时生效,选中继续训练时无效",
|
||
example="test"
|
||
)
|
||
model_config: str = Field(
|
||
..., alias="新模型配置", description="仅在重新训练时生效,选中继续训练时无效",
|
||
example=".\\ppg2mel\\saved_models\\seq2seq_mol_ppg2mel_vctk_libri_oneshotvc_r4_normMel_v2"
|
||
)
|
||
|
||
class AudioEntity(BaseModel):
|
||
content: bytes
|
||
mel: Any
|
||
|
||
class Output(BaseModel):
|
||
__root__: tuple[str, int]
|
||
|
||
def render_output_ui(self, streamlit_app, input) -> None: # type: ignore
|
||
"""Custom output UI.
|
||
If this method is implmeneted, it will be used instead of the default Output UI renderer.
|
||
"""
|
||
sr, count = self.__root__
|
||
streamlit_app.subheader(f"Dataset {sr} done processed total of {count}")
|
||
|
||
def train(input: Input) -> Output:
|
||
"""Train(训练)"""
|
||
|
||
print(">>> OneShot VC training ...")
|
||
params = AttrDict()
|
||
params.update({
|
||
"gpu": input.gpu,
|
||
"cpu": not input.gpu,
|
||
"njobs": input.njobs,
|
||
"seed": input.seed,
|
||
"verbose": input.verbose,
|
||
"load": input.convertor.value,
|
||
"warm_start": False,
|
||
})
|
||
if input.continue_mode:
|
||
# trace old model and config
|
||
p = Path(input.convertor.value)
|
||
params.name = p.parent.name
|
||
# search a config file
|
||
model_config_fpaths = list(p.parent.rglob("*.yaml"))
|
||
if len(model_config_fpaths) == 0:
|
||
raise "No model yaml config found for convertor"
|
||
config = HpsYaml(model_config_fpaths[0])
|
||
params.ckpdir = p.parent.parent
|
||
params.config = model_config_fpaths[0]
|
||
params.logdir = os.path.join(p.parent, "log")
|
||
else:
|
||
# Make the config dict dot visitable
|
||
config = HpsYaml(input.config)
|
||
np.random.seed(input.seed)
|
||
torch.manual_seed(input.seed)
|
||
if torch.cuda.is_available():
|
||
torch.cuda.manual_seed_all(input.seed)
|
||
mode = "train"
|
||
from ppg2mel.train.train_linglf02mel_seq2seq_oneshotvc import Solver
|
||
solver = Solver(config, params, mode)
|
||
solver.load_data()
|
||
solver.set_model()
|
||
solver.exec()
|
||
print(">>> Oneshot VC train finished!")
|
||
|
||
# TODO: pass useful return code
|
||
return Output(__root__=(input.dataset, 0)) |