MockingBird/toolbox/__init__.py

368 lines
14 KiB
Python

from toolbox.ui import UI
from encoder import inference as encoder
from synthesizer.inference import Synthesizer
from vocoder import inference as vocoder
from pathlib import Path
from time import perf_counter as timer
from toolbox.utterance import Utterance
import numpy as np
import traceback
import sys
import torch
import librosa
import re
from audioread.exceptions import NoBackendError
# Use this directory structure for your datasets, or modify it to fit your needs
recognized_datasets = [
"LibriSpeech/dev-clean",
"LibriSpeech/dev-other",
"LibriSpeech/test-clean",
"LibriSpeech/test-other",
"LibriSpeech/train-clean-100",
"LibriSpeech/train-clean-360",
"LibriSpeech/train-other-500",
"LibriTTS/dev-clean",
"LibriTTS/dev-other",
"LibriTTS/test-clean",
"LibriTTS/test-other",
"LibriTTS/train-clean-100",
"LibriTTS/train-clean-360",
"LibriTTS/train-other-500",
"LJSpeech-1.1",
"VoxCeleb1/wav",
"VoxCeleb1/test_wav",
"VoxCeleb2/dev/aac",
"VoxCeleb2/test/aac",
"VCTK-Corpus/wav48",
"aidatatang_200zh/corpus/dev",
"aidatatang_200zh/corpus/test",
]
#Maximum of generated wavs to keep on memory
MAX_WAVES = 15
class Toolbox:
def __init__(self, datasets_root, enc_models_dir, syn_models_dir, voc_models_dir, seed, no_mp3_support):
if not no_mp3_support:
try:
librosa.load("samples/6829_00000.mp3")
except NoBackendError:
print("Librosa will be unable to open mp3 files if additional software is not installed.\n"
"Please install ffmpeg or add the '--no_mp3_support' option to proceed without support for mp3 files.")
exit(-1)
self.no_mp3_support = no_mp3_support
sys.excepthook = self.excepthook
self.datasets_root = datasets_root
self.utterances = set()
self.current_generated = (None, None, None, None) # speaker_name, spec, breaks, wav
self.synthesizer = None # type: Synthesizer
self.current_wav = None
self.waves_list = []
self.waves_count = 0
self.waves_namelist = []
# Check for webrtcvad (enables removal of silences in vocoder output)
try:
import webrtcvad
self.trim_silences = True
except:
self.trim_silences = False
# Initialize the events and the interface
self.ui = UI()
self.reset_ui(enc_models_dir, syn_models_dir, voc_models_dir, seed)
self.setup_events()
self.ui.start()
def excepthook(self, exc_type, exc_value, exc_tb):
traceback.print_exception(exc_type, exc_value, exc_tb)
self.ui.log("Exception: %s" % exc_value)
def setup_events(self):
# Dataset, speaker and utterance selection
self.ui.browser_load_button.clicked.connect(lambda: self.load_from_browser())
random_func = lambda level: lambda: self.ui.populate_browser(self.datasets_root,
recognized_datasets,
level)
self.ui.random_dataset_button.clicked.connect(random_func(0))
self.ui.random_speaker_button.clicked.connect(random_func(1))
self.ui.random_utterance_button.clicked.connect(random_func(2))
self.ui.dataset_box.currentIndexChanged.connect(random_func(1))
self.ui.speaker_box.currentIndexChanged.connect(random_func(2))
# Model selection
self.ui.encoder_box.currentIndexChanged.connect(self.init_encoder)
def func():
self.synthesizer = None
self.ui.synthesizer_box.currentIndexChanged.connect(func)
self.ui.vocoder_box.currentIndexChanged.connect(self.init_vocoder)
# Utterance selection
func = lambda: self.load_from_browser(self.ui.browse_file())
self.ui.browser_browse_button.clicked.connect(func)
func = lambda: self.ui.draw_utterance(self.ui.selected_utterance, "current")
self.ui.utterance_history.currentIndexChanged.connect(func)
func = lambda: self.ui.play(self.ui.selected_utterance.wav, Synthesizer.sample_rate)
self.ui.play_button.clicked.connect(func)
self.ui.stop_button.clicked.connect(self.ui.stop)
self.ui.record_button.clicked.connect(self.record)
#Audio
self.ui.setup_audio_devices(Synthesizer.sample_rate)
#Wav playback & save
func = lambda: self.replay_last_wav()
self.ui.replay_wav_button.clicked.connect(func)
func = lambda: self.export_current_wave()
self.ui.export_wav_button.clicked.connect(func)
self.ui.waves_cb.currentIndexChanged.connect(self.set_current_wav)
# Generation
func = lambda: self.synthesize() or self.vocode()
self.ui.generate_button.clicked.connect(func)
self.ui.synthesize_button.clicked.connect(self.synthesize)
self.ui.vocode_button.clicked.connect(self.vocode)
self.ui.random_seed_checkbox.clicked.connect(self.update_seed_textbox)
# UMAP legend
self.ui.clear_button.clicked.connect(self.clear_utterances)
def set_current_wav(self, index):
self.current_wav = self.waves_list[index]
def export_current_wave(self):
self.ui.save_audio_file(self.current_wav, Synthesizer.sample_rate)
def replay_last_wav(self):
self.ui.play(self.current_wav, Synthesizer.sample_rate)
def reset_ui(self, encoder_models_dir, synthesizer_models_dir, vocoder_models_dir, seed):
self.ui.populate_browser(self.datasets_root, recognized_datasets, 0, True)
self.ui.populate_models(encoder_models_dir, synthesizer_models_dir, vocoder_models_dir)
self.ui.populate_gen_options(seed, self.trim_silences)
def load_from_browser(self, fpath=None):
if fpath is None:
fpath = Path(self.datasets_root,
self.ui.current_dataset_name,
self.ui.current_speaker_name,
self.ui.current_utterance_name)
name = str(fpath.relative_to(self.datasets_root))
speaker_name = self.ui.current_dataset_name + '_' + self.ui.current_speaker_name
# Select the next utterance
if self.ui.auto_next_checkbox.isChecked():
self.ui.browser_select_next()
elif fpath == "":
return
else:
name = fpath.name
speaker_name = fpath.parent.name
if fpath.suffix.lower() == ".mp3" and self.no_mp3_support:
self.ui.log("Error: No mp3 file argument was passed but an mp3 file was used")
return
# Get the wav from the disk. We take the wav with the vocoder/synthesizer format for
# playback, so as to have a fair comparison with the generated audio
wav = Synthesizer.load_preprocess_wav(fpath)
self.ui.log("Loaded %s" % name)
self.add_real_utterance(wav, name, speaker_name)
def record(self):
wav = self.ui.record_one(encoder.sampling_rate, 5)
if wav is None:
return
self.ui.play(wav, encoder.sampling_rate)
speaker_name = "user01"
name = speaker_name + "_rec_%05d" % np.random.randint(100000)
self.add_real_utterance(wav, name, speaker_name)
def add_real_utterance(self, wav, name, speaker_name):
# Compute the mel spectrogram
spec = Synthesizer.make_spectrogram(wav)
self.ui.draw_spec(spec, "current")
# Compute the embedding
if not encoder.is_loaded():
self.init_encoder()
encoder_wav = encoder.preprocess_wav(wav)
embed, partial_embeds, _ = encoder.embed_utterance(encoder_wav, return_partials=True)
# Add the utterance
utterance = Utterance(name, speaker_name, wav, spec, embed, partial_embeds, False)
self.utterances.add(utterance)
self.ui.register_utterance(utterance)
# Plot it
self.ui.draw_embed(embed, name, "current")
self.ui.draw_umap_projections(self.utterances)
def clear_utterances(self):
self.utterances.clear()
self.ui.draw_umap_projections(self.utterances)
def synthesize(self):
self.ui.log("Generating the mel spectrogram...")
self.ui.set_loading(1)
# Update the synthesizer random seed
if self.ui.random_seed_checkbox.isChecked():
seed = int(self.ui.seed_textbox.text())
self.ui.populate_gen_options(seed, self.trim_silences)
else:
seed = None
if seed is not None:
torch.manual_seed(seed)
# Synthesize the spectrogram
if self.synthesizer is None or seed is not None:
self.init_synthesizer()
texts = self.ui.text_prompt.toPlainText().split("\n")
punctuation = '!,。、,' # punctuate and split/clean text
processed_texts = []
for text in texts:
for processed_text in re.sub(r'[{}]+'.format(punctuation), '\n', text).split('\n'):
if processed_text:
processed_texts.append(processed_text.strip())
texts = processed_texts
embed = self.ui.selected_utterance.embed
embeds = [embed] * len(texts)
specs = self.synthesizer.synthesize_spectrograms(texts, embeds)
breaks = [spec.shape[1] for spec in specs]
spec = np.concatenate(specs, axis=1)
self.ui.draw_spec(spec, "generated")
self.current_generated = (self.ui.selected_utterance.speaker_name, spec, breaks, None)
self.ui.set_loading(0)
def vocode(self):
speaker_name, spec, breaks, _ = self.current_generated
assert spec is not None
# Initialize the vocoder model and make it determinstic, if user provides a seed
if self.ui.random_seed_checkbox.isChecked():
seed = int(self.ui.seed_textbox.text())
self.ui.populate_gen_options(seed, self.trim_silences)
else:
seed = None
if seed is not None:
torch.manual_seed(seed)
# Synthesize the waveform
if not vocoder.is_loaded() or seed is not None:
self.init_vocoder()
def vocoder_progress(i, seq_len, b_size, gen_rate):
real_time_factor = (gen_rate / Synthesizer.sample_rate) * 1000
line = "Waveform generation: %d/%d (batch size: %d, rate: %.1fkHz - %.2fx real time)" \
% (i * b_size, seq_len * b_size, b_size, gen_rate, real_time_factor)
self.ui.log(line, "overwrite")
self.ui.set_loading(i, seq_len)
if self.ui.current_vocoder_fpath is not None:
self.ui.log("")
wav = vocoder.infer_waveform(spec, progress_callback=vocoder_progress)
else:
self.ui.log("Waveform generation with Griffin-Lim... ")
wav = Synthesizer.griffin_lim(spec)
self.ui.set_loading(0)
self.ui.log(" Done!", "append")
# Add breaks
b_ends = np.cumsum(np.array(breaks) * Synthesizer.hparams.hop_size)
b_starts = np.concatenate(([0], b_ends[:-1]))
wavs = [wav[start:end] for start, end, in zip(b_starts, b_ends)]
breaks = [np.zeros(int(0.15 * Synthesizer.sample_rate))] * len(breaks)
wav = np.concatenate([i for w, b in zip(wavs, breaks) for i in (w, b)])
# Trim excessive silences
if self.ui.trim_silences_checkbox.isChecked():
wav = encoder.preprocess_wav(wav)
# Play it
wav = wav / np.abs(wav).max() * 0.97
self.ui.play(wav, Synthesizer.sample_rate)
# Name it (history displayed in combobox)
# TODO better naming for the combobox items?
wav_name = str(self.waves_count + 1)
#Update waves combobox
self.waves_count += 1
if self.waves_count > MAX_WAVES:
self.waves_list.pop()
self.waves_namelist.pop()
self.waves_list.insert(0, wav)
self.waves_namelist.insert(0, wav_name)
self.ui.waves_cb.disconnect()
self.ui.waves_cb_model.setStringList(self.waves_namelist)
self.ui.waves_cb.setCurrentIndex(0)
self.ui.waves_cb.currentIndexChanged.connect(self.set_current_wav)
# Update current wav
self.set_current_wav(0)
#Enable replay and save buttons:
self.ui.replay_wav_button.setDisabled(False)
self.ui.export_wav_button.setDisabled(False)
# Compute the embedding
# TODO: this is problematic with different sampling rates, gotta fix it
if not encoder.is_loaded():
self.init_encoder()
encoder_wav = encoder.preprocess_wav(wav)
embed, partial_embeds, _ = encoder.embed_utterance(encoder_wav, return_partials=True)
# Add the utterance
name = speaker_name + "_gen_%05d" % np.random.randint(100000)
utterance = Utterance(name, speaker_name, wav, spec, embed, partial_embeds, True)
self.utterances.add(utterance)
# Plot it
self.ui.draw_embed(embed, name, "generated")
self.ui.draw_umap_projections(self.utterances)
def init_encoder(self):
model_fpath = self.ui.current_encoder_fpath
self.ui.log("Loading the encoder %s... " % model_fpath)
self.ui.set_loading(1)
start = timer()
encoder.load_model(model_fpath)
self.ui.log("Done (%dms)." % int(1000 * (timer() - start)), "append")
self.ui.set_loading(0)
def init_synthesizer(self):
model_fpath = self.ui.current_synthesizer_fpath
self.ui.log("Loading the synthesizer %s... " % model_fpath)
self.ui.set_loading(1)
start = timer()
self.synthesizer = Synthesizer(model_fpath)
self.ui.log("Done (%dms)." % int(1000 * (timer() - start)), "append")
self.ui.set_loading(0)
def init_vocoder(self):
model_fpath = self.ui.current_vocoder_fpath
# Case of Griffin-lim
if model_fpath is None:
return
self.ui.log("Loading the vocoder %s... " % model_fpath)
self.ui.set_loading(1)
start = timer()
vocoder.load_model(model_fpath)
self.ui.log("Done (%dms)." % int(1000 * (timer() - start)), "append")
self.ui.set_loading(0)
def update_seed_textbox(self):
self.ui.update_seed_textbox()