mirror of
https://github.com/babysor/MockingBird.git
synced 2024-03-22 13:11:31 +08:00
74a3fc97d0
Need readme
56 lines
2.1 KiB
Python
56 lines
2.1 KiB
Python
from models.encoder.data_objects.random_cycler import RandomCycler
|
|
from models.encoder.data_objects.speaker_batch import SpeakerBatch
|
|
from models.encoder.data_objects.speaker import Speaker
|
|
from models.encoder.params_data import partials_n_frames
|
|
from torch.utils.data import Dataset, DataLoader
|
|
from pathlib import Path
|
|
|
|
# TODO: improve with a pool of speakers for data efficiency
|
|
|
|
class SpeakerVerificationDataset(Dataset):
|
|
def __init__(self, datasets_root: Path):
|
|
self.root = datasets_root
|
|
speaker_dirs = [f for f in self.root.glob("*") if f.is_dir()]
|
|
if len(speaker_dirs) == 0:
|
|
raise Exception("No speakers found. Make sure you are pointing to the directory "
|
|
"containing all preprocessed speaker directories.")
|
|
self.speakers = [Speaker(speaker_dir) for speaker_dir in speaker_dirs]
|
|
self.speaker_cycler = RandomCycler(self.speakers)
|
|
|
|
def __len__(self):
|
|
return int(1e10)
|
|
|
|
def __getitem__(self, index):
|
|
return next(self.speaker_cycler)
|
|
|
|
def get_logs(self):
|
|
log_string = ""
|
|
for log_fpath in self.root.glob("*.txt"):
|
|
with log_fpath.open("r") as log_file:
|
|
log_string += "".join(log_file.readlines())
|
|
return log_string
|
|
|
|
|
|
class SpeakerVerificationDataLoader(DataLoader):
|
|
def __init__(self, dataset, speakers_per_batch, utterances_per_speaker, sampler=None,
|
|
batch_sampler=None, num_workers=0, pin_memory=False, timeout=0,
|
|
worker_init_fn=None):
|
|
self.utterances_per_speaker = utterances_per_speaker
|
|
|
|
super().__init__(
|
|
dataset=dataset,
|
|
batch_size=speakers_per_batch,
|
|
shuffle=False,
|
|
sampler=sampler,
|
|
batch_sampler=batch_sampler,
|
|
num_workers=num_workers,
|
|
collate_fn=self.collate,
|
|
pin_memory=pin_memory,
|
|
drop_last=False,
|
|
timeout=timeout,
|
|
worker_init_fn=worker_init_fn
|
|
)
|
|
|
|
def collate(self, speakers):
|
|
return SpeakerBatch(speakers, self.utterances_per_speaker, partials_n_frames)
|
|
|