MockingBird/ppg_extractor/utterance_mvn.py
2022-02-09 00:44:43 +08:00

83 lines
2.1 KiB
Python

from typing import Tuple
import torch
from .nets_utils import make_pad_mask
class UtteranceMVN(torch.nn.Module):
def __init__(
self, norm_means: bool = True, norm_vars: bool = False, eps: float = 1.0e-20,
):
super().__init__()
self.norm_means = norm_means
self.norm_vars = norm_vars
self.eps = eps
def extra_repr(self):
return f"norm_means={self.norm_means}, norm_vars={self.norm_vars}"
def forward(
self, x: torch.Tensor, ilens: torch.Tensor = None
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Forward function
Args:
x: (B, L, ...)
ilens: (B,)
"""
return utterance_mvn(
x,
ilens,
norm_means=self.norm_means,
norm_vars=self.norm_vars,
eps=self.eps,
)
def utterance_mvn(
x: torch.Tensor,
ilens: torch.Tensor = None,
norm_means: bool = True,
norm_vars: bool = False,
eps: float = 1.0e-20,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Apply utterance mean and variance normalization
Args:
x: (B, T, D), assumed zero padded
ilens: (B,)
norm_means:
norm_vars:
eps:
"""
if ilens is None:
ilens = x.new_full([x.size(0)], x.size(1))
ilens_ = ilens.to(x.device, x.dtype).view(-1, *[1 for _ in range(x.dim() - 1)])
# Zero padding
if x.requires_grad:
x = x.masked_fill(make_pad_mask(ilens, x, 1), 0.0)
else:
x.masked_fill_(make_pad_mask(ilens, x, 1), 0.0)
# mean: (B, 1, D)
mean = x.sum(dim=1, keepdim=True) / ilens_
if norm_means:
x -= mean
if norm_vars:
var = x.pow(2).sum(dim=1, keepdim=True) / ilens_
std = torch.clamp(var.sqrt(), min=eps)
x = x / std.sqrt()
return x, ilens
else:
if norm_vars:
y = x - mean
y.masked_fill_(make_pad_mask(ilens, y, 1), 0.0)
var = y.pow(2).sum(dim=1, keepdim=True) / ilens_
std = torch.clamp(var.sqrt(), min=eps)
x /= std
return x, ilens