mirror of
https://github.com/babysor/MockingBird.git
synced 2024-03-22 13:11:31 +08:00
106 lines
3.1 KiB
Python
106 lines
3.1 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
# Copyright 2019 Tomoki Hayashi
|
|
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
|
|
|
"""Layer modules for FFT block in FastSpeech (Feed-forward Transformer)."""
|
|
|
|
import torch
|
|
|
|
|
|
class MultiLayeredConv1d(torch.nn.Module):
|
|
"""Multi-layered conv1d for Transformer block.
|
|
|
|
This is a module of multi-leyered conv1d designed
|
|
to replace positionwise feed-forward network
|
|
in Transforner block, which is introduced in
|
|
`FastSpeech: Fast, Robust and Controllable Text to Speech`_.
|
|
|
|
.. _`FastSpeech: Fast, Robust and Controllable Text to Speech`:
|
|
https://arxiv.org/pdf/1905.09263.pdf
|
|
|
|
"""
|
|
|
|
def __init__(self, in_chans, hidden_chans, kernel_size, dropout_rate):
|
|
"""Initialize MultiLayeredConv1d module.
|
|
|
|
Args:
|
|
in_chans (int): Number of input channels.
|
|
hidden_chans (int): Number of hidden channels.
|
|
kernel_size (int): Kernel size of conv1d.
|
|
dropout_rate (float): Dropout rate.
|
|
|
|
"""
|
|
super(MultiLayeredConv1d, self).__init__()
|
|
self.w_1 = torch.nn.Conv1d(
|
|
in_chans,
|
|
hidden_chans,
|
|
kernel_size,
|
|
stride=1,
|
|
padding=(kernel_size - 1) // 2,
|
|
)
|
|
self.w_2 = torch.nn.Conv1d(
|
|
hidden_chans,
|
|
in_chans,
|
|
kernel_size,
|
|
stride=1,
|
|
padding=(kernel_size - 1) // 2,
|
|
)
|
|
self.dropout = torch.nn.Dropout(dropout_rate)
|
|
|
|
def forward(self, x):
|
|
"""Calculate forward propagation.
|
|
|
|
Args:
|
|
x (Tensor): Batch of input tensors (B, ..., in_chans).
|
|
|
|
Returns:
|
|
Tensor: Batch of output tensors (B, ..., hidden_chans).
|
|
|
|
"""
|
|
x = torch.relu(self.w_1(x.transpose(-1, 1))).transpose(-1, 1)
|
|
return self.w_2(self.dropout(x).transpose(-1, 1)).transpose(-1, 1)
|
|
|
|
|
|
class Conv1dLinear(torch.nn.Module):
|
|
"""Conv1D + Linear for Transformer block.
|
|
|
|
A variant of MultiLayeredConv1d, which replaces second conv-layer to linear.
|
|
|
|
"""
|
|
|
|
def __init__(self, in_chans, hidden_chans, kernel_size, dropout_rate):
|
|
"""Initialize Conv1dLinear module.
|
|
|
|
Args:
|
|
in_chans (int): Number of input channels.
|
|
hidden_chans (int): Number of hidden channels.
|
|
kernel_size (int): Kernel size of conv1d.
|
|
dropout_rate (float): Dropout rate.
|
|
|
|
"""
|
|
super(Conv1dLinear, self).__init__()
|
|
self.w_1 = torch.nn.Conv1d(
|
|
in_chans,
|
|
hidden_chans,
|
|
kernel_size,
|
|
stride=1,
|
|
padding=(kernel_size - 1) // 2,
|
|
)
|
|
self.w_2 = torch.nn.Linear(hidden_chans, in_chans)
|
|
self.dropout = torch.nn.Dropout(dropout_rate)
|
|
|
|
def forward(self, x):
|
|
"""Calculate forward propagation.
|
|
|
|
Args:
|
|
x (Tensor): Batch of input tensors (B, ..., in_chans).
|
|
|
|
Returns:
|
|
Tensor: Batch of output tensors (B, ..., hidden_chans).
|
|
|
|
"""
|
|
x = torch.relu(self.w_1(x.transpose(-1, 1))).transpose(-1, 1)
|
|
return self.w_2(self.dropout(x))
|