1
0
mirror of https://github.com/babysor/MockingBird.git synced 2024-03-22 13:11:31 +08:00
Vega ddd478c0ad
Web server ()
* Init App

* init server.py ()

* init server.py

* Update requirements.txt

Add requirement

Co-authored-by: auau <auau@test.com>
Co-authored-by: babysor00 <babysor00@gmail.com>

* Run web.py!

Run web.py!

Co-authored-by: balala <Ozgay@users.noreply.github.com>
Co-authored-by: auau <auau@test.com>
2021-09-21 16:56:12 +08:00

112 lines
2.8 KiB
JavaScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
时域转频域,快速傅里叶变换(FFT)
https://github.com/xiangyuecn/Recorder
var fft=Recorder.LibFFT(bufferSize)
bufferSize取值2的n次方
fft.bufferSize 实际采用的bufferSize
fft.transform(inBuffer)
inBuffer:[Int16,...] 数组长度必须是bufferSize
返回[Float64(Long),...]长度为bufferSize/2
*/
/*
从FFT.java 移植Java开源库jmp123 版本0.3
https://www.iteye.com/topic/851459
https://sourceforge.net/projects/jmp123/files/
*/
Recorder.LibFFT=function(bufferSize){
"use strict";
var FFT_N_LOG,FFT_N,MINY;
var real, imag, sintable, costable;
var bitReverse;
var FFT_Fn=function(bufferSize) {//bufferSize只能取值2的n次方
FFT_N_LOG=Math.round(Math.log(bufferSize)/Math.log(2));
FFT_N = 1 << FFT_N_LOG;
MINY = ((FFT_N << 2) * Math.sqrt(2));
real = [];
imag = [];
sintable = [0];
costable = [0];
bitReverse = [];
var i, j, k, reve;
for (i = 0; i < FFT_N; i++) {
k = i;
for (j = 0, reve = 0; j != FFT_N_LOG; j++) {
reve <<= 1;
reve |= (k & 1);
k >>>= 1;
}
bitReverse[i] = reve;
}
var theta, dt = 2 * Math.PI / FFT_N;
for (i = (FFT_N >> 1) - 1; i > 0; i--) {
theta = i * dt;
costable[i] = Math.cos(theta);
sintable[i] = Math.sin(theta);
}
}
/*
用于频谱显示的快速傅里叶变换
inBuffer 输入FFT_N个实数返回 FFT_N/2个输出值(复数模的平方)。
*/
var getModulus=function(inBuffer) {
var i, j, k, ir, j0 = 1, idx = FFT_N_LOG - 1;
var cosv, sinv, tmpr, tmpi;
for (i = 0; i != FFT_N; i++) {
real[i] = inBuffer[bitReverse[i]];
imag[i] = 0;
}
for (i = FFT_N_LOG; i != 0; i--) {
for (j = 0; j != j0; j++) {
cosv = costable[j << idx];
sinv = sintable[j << idx];
for (k = j; k < FFT_N; k += j0 << 1) {
ir = k + j0;
tmpr = cosv * real[ir] - sinv * imag[ir];
tmpi = cosv * imag[ir] + sinv * real[ir];
real[ir] = real[k] - tmpr;
imag[ir] = imag[k] - tmpi;
real[k] += tmpr;
imag[k] += tmpi;
}
}
j0 <<= 1;
idx--;
}
j = FFT_N >> 1;
var outBuffer=new Float64Array(j);
/*
* 输出模的平方:
* for(i = 1; i <= j; i++)
* inBuffer[i-1] = real[i] * real[i] + imag[i] * imag[i];
*
* 如果FFT只用于频谱显示,可以"淘汰"幅值较小的而减少浮点乘法运算. MINY的值
* 和Spectrum.Y0,Spectrum.logY0对应.
*/
sinv = MINY;
cosv = -MINY;
for (i = j; i != 0; i--) {
tmpr = real[i];
tmpi = imag[i];
if (tmpr > cosv && tmpr < sinv && tmpi > cosv && tmpi < sinv)
outBuffer[i - 1] = 0;
else
outBuffer[i - 1] = Math.round(tmpr * tmpr + tmpi * tmpi);
}
return outBuffer;
}
FFT_Fn(bufferSize);
return {transform:getModulus,bufferSize:FFT_N};
};