mirror of
https://github.com/babysor/MockingBird.git
synced 2024-03-22 13:11:31 +08:00
b617a87ee4
* Init ppg extractor and ppg2mel * add preprocess and training * FIx known issues * Update __init__.py Allow to gen audio * Fix length issue * Fix bug of preparing fid * Fix sample issues * Add UI usage of PPG-vc
219 lines
7.0 KiB
Python
219 lines
7.0 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
# Copyright 2019 Shigeki Karita
|
|
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
|
|
|
"""Subsampling layer definition."""
|
|
import logging
|
|
import torch
|
|
|
|
from espnet.nets.pytorch_backend.transformer.embedding import PositionalEncoding
|
|
|
|
|
|
class Conv2dSubsampling(torch.nn.Module):
|
|
"""Convolutional 2D subsampling (to 1/4 length or 1/2 length).
|
|
|
|
:param int idim: input dim
|
|
:param int odim: output dim
|
|
:param flaot dropout_rate: dropout rate
|
|
:param torch.nn.Module pos_enc: custom position encoding layer
|
|
|
|
"""
|
|
|
|
def __init__(self, idim, odim, dropout_rate, pos_enc=None,
|
|
subsample_by_2=False,
|
|
):
|
|
"""Construct an Conv2dSubsampling object."""
|
|
super(Conv2dSubsampling, self).__init__()
|
|
self.subsample_by_2 = subsample_by_2
|
|
if subsample_by_2:
|
|
self.conv = torch.nn.Sequential(
|
|
torch.nn.Conv2d(1, odim, kernel_size=5, stride=1, padding=2),
|
|
torch.nn.ReLU(),
|
|
torch.nn.Conv2d(odim, odim, kernel_size=4, stride=2, padding=1),
|
|
torch.nn.ReLU(),
|
|
)
|
|
self.out = torch.nn.Sequential(
|
|
torch.nn.Linear(odim * (idim // 2), odim),
|
|
pos_enc if pos_enc is not None else PositionalEncoding(odim, dropout_rate),
|
|
)
|
|
else:
|
|
self.conv = torch.nn.Sequential(
|
|
torch.nn.Conv2d(1, odim, kernel_size=4, stride=2, padding=1),
|
|
torch.nn.ReLU(),
|
|
torch.nn.Conv2d(odim, odim, kernel_size=4, stride=2, padding=1),
|
|
torch.nn.ReLU(),
|
|
)
|
|
self.out = torch.nn.Sequential(
|
|
torch.nn.Linear(odim * (idim // 4), odim),
|
|
pos_enc if pos_enc is not None else PositionalEncoding(odim, dropout_rate),
|
|
)
|
|
|
|
def forward(self, x, x_mask):
|
|
"""Subsample x.
|
|
|
|
:param torch.Tensor x: input tensor
|
|
:param torch.Tensor x_mask: input mask
|
|
:return: subsampled x and mask
|
|
:rtype Tuple[torch.Tensor, torch.Tensor]
|
|
|
|
"""
|
|
x = x.unsqueeze(1) # (b, c, t, f)
|
|
x = self.conv(x)
|
|
b, c, t, f = x.size()
|
|
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
|
if x_mask is None:
|
|
return x, None
|
|
if self.subsample_by_2:
|
|
return x, x_mask[:, :, ::2]
|
|
else:
|
|
return x, x_mask[:, :, ::2][:, :, ::2]
|
|
|
|
def __getitem__(self, key):
|
|
"""Subsample x.
|
|
|
|
When reset_parameters() is called, if use_scaled_pos_enc is used,
|
|
return the positioning encoding.
|
|
|
|
"""
|
|
if key != -1:
|
|
raise NotImplementedError("Support only `-1` (for `reset_parameters`).")
|
|
return self.out[key]
|
|
|
|
|
|
class Conv2dNoSubsampling(torch.nn.Module):
|
|
"""Convolutional 2D without subsampling.
|
|
|
|
:param int idim: input dim
|
|
:param int odim: output dim
|
|
:param flaot dropout_rate: dropout rate
|
|
:param torch.nn.Module pos_enc: custom position encoding layer
|
|
|
|
"""
|
|
|
|
def __init__(self, idim, odim, dropout_rate, pos_enc=None):
|
|
"""Construct an Conv2dSubsampling object."""
|
|
super().__init__()
|
|
logging.info("Encoder does not do down-sample on mel-spectrogram.")
|
|
self.conv = torch.nn.Sequential(
|
|
torch.nn.Conv2d(1, odim, kernel_size=5, stride=1, padding=2),
|
|
torch.nn.ReLU(),
|
|
torch.nn.Conv2d(odim, odim, kernel_size=5, stride=1, padding=2),
|
|
torch.nn.ReLU(),
|
|
)
|
|
self.out = torch.nn.Sequential(
|
|
torch.nn.Linear(odim * idim, odim),
|
|
pos_enc if pos_enc is not None else PositionalEncoding(odim, dropout_rate),
|
|
)
|
|
|
|
def forward(self, x, x_mask):
|
|
"""Subsample x.
|
|
|
|
:param torch.Tensor x: input tensor
|
|
:param torch.Tensor x_mask: input mask
|
|
:return: subsampled x and mask
|
|
:rtype Tuple[torch.Tensor, torch.Tensor]
|
|
|
|
"""
|
|
x = x.unsqueeze(1) # (b, c, t, f)
|
|
x = self.conv(x)
|
|
b, c, t, f = x.size()
|
|
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
|
if x_mask is None:
|
|
return x, None
|
|
return x, x_mask
|
|
|
|
def __getitem__(self, key):
|
|
"""Subsample x.
|
|
|
|
When reset_parameters() is called, if use_scaled_pos_enc is used,
|
|
return the positioning encoding.
|
|
|
|
"""
|
|
if key != -1:
|
|
raise NotImplementedError("Support only `-1` (for `reset_parameters`).")
|
|
return self.out[key]
|
|
|
|
|
|
class Conv2dSubsampling6(torch.nn.Module):
|
|
"""Convolutional 2D subsampling (to 1/6 length).
|
|
|
|
:param int idim: input dim
|
|
:param int odim: output dim
|
|
:param flaot dropout_rate: dropout rate
|
|
|
|
"""
|
|
|
|
def __init__(self, idim, odim, dropout_rate):
|
|
"""Construct an Conv2dSubsampling object."""
|
|
super(Conv2dSubsampling6, self).__init__()
|
|
self.conv = torch.nn.Sequential(
|
|
torch.nn.Conv2d(1, odim, 3, 2),
|
|
torch.nn.ReLU(),
|
|
torch.nn.Conv2d(odim, odim, 5, 3),
|
|
torch.nn.ReLU(),
|
|
)
|
|
self.out = torch.nn.Sequential(
|
|
torch.nn.Linear(odim * (((idim - 1) // 2 - 2) // 3), odim),
|
|
PositionalEncoding(odim, dropout_rate),
|
|
)
|
|
|
|
def forward(self, x, x_mask):
|
|
"""Subsample x.
|
|
|
|
:param torch.Tensor x: input tensor
|
|
:param torch.Tensor x_mask: input mask
|
|
:return: subsampled x and mask
|
|
:rtype Tuple[torch.Tensor, torch.Tensor]
|
|
"""
|
|
x = x.unsqueeze(1) # (b, c, t, f)
|
|
x = self.conv(x)
|
|
b, c, t, f = x.size()
|
|
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
|
if x_mask is None:
|
|
return x, None
|
|
return x, x_mask[:, :, :-2:2][:, :, :-4:3]
|
|
|
|
|
|
class Conv2dSubsampling8(torch.nn.Module):
|
|
"""Convolutional 2D subsampling (to 1/8 length).
|
|
|
|
:param int idim: input dim
|
|
:param int odim: output dim
|
|
:param flaot dropout_rate: dropout rate
|
|
|
|
"""
|
|
|
|
def __init__(self, idim, odim, dropout_rate):
|
|
"""Construct an Conv2dSubsampling object."""
|
|
super(Conv2dSubsampling8, self).__init__()
|
|
self.conv = torch.nn.Sequential(
|
|
torch.nn.Conv2d(1, odim, 3, 2),
|
|
torch.nn.ReLU(),
|
|
torch.nn.Conv2d(odim, odim, 3, 2),
|
|
torch.nn.ReLU(),
|
|
torch.nn.Conv2d(odim, odim, 3, 2),
|
|
torch.nn.ReLU(),
|
|
)
|
|
self.out = torch.nn.Sequential(
|
|
torch.nn.Linear(odim * ((((idim - 1) // 2 - 1) // 2 - 1) // 2), odim),
|
|
PositionalEncoding(odim, dropout_rate),
|
|
)
|
|
|
|
def forward(self, x, x_mask):
|
|
"""Subsample x.
|
|
|
|
:param torch.Tensor x: input tensor
|
|
:param torch.Tensor x_mask: input mask
|
|
:return: subsampled x and mask
|
|
:rtype Tuple[torch.Tensor, torch.Tensor]
|
|
"""
|
|
x = x.unsqueeze(1) # (b, c, t, f)
|
|
x = self.conv(x)
|
|
b, c, t, f = x.size()
|
|
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
|
if x_mask is None:
|
|
return x, None
|
|
return x, x_mask[:, :, :-2:2][:, :, :-2:2][:, :, :-2:2]
|