MockingBird/models/synthesizer/train.py
2022-12-03 16:54:06 +08:00

318 lines
14 KiB
Python

import torch
import torch.nn.functional as F
from torch import optim
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from models.synthesizer import audio
from models.synthesizer.models.tacotron import Tacotron
from models.synthesizer.synthesizer_dataset import SynthesizerDataset, collate_synthesizer
from models.synthesizer.utils import ValueWindow, data_parallel_workaround
from models.synthesizer.utils.plot import plot_spectrogram, plot_spectrogram_and_trace
from models.synthesizer.utils.symbols import symbols
from models.synthesizer.utils.text import sequence_to_text
from models.vocoder.display import *
from datetime import datetime
import json
import numpy as np
from pathlib import Path
import time
import os
def np_now(x: torch.Tensor): return x.detach().cpu().numpy()
def time_string():
return datetime.now().strftime("%Y-%m-%d %H:%M")
def train(run_id: str, syn_dir: str, models_dir: str, save_every: int,
backup_every: int, log_every:int, force_restart:bool, hparams):
syn_dir = Path(syn_dir)
models_dir = Path(models_dir)
models_dir.mkdir(exist_ok=True)
model_dir = models_dir.joinpath(run_id)
plot_dir = model_dir.joinpath("plots")
wav_dir = model_dir.joinpath("wavs")
mel_output_dir = model_dir.joinpath("mel-spectrograms")
meta_folder = model_dir.joinpath("metas")
model_dir.mkdir(exist_ok=True)
plot_dir.mkdir(exist_ok=True)
wav_dir.mkdir(exist_ok=True)
mel_output_dir.mkdir(exist_ok=True)
meta_folder.mkdir(exist_ok=True)
weights_fpath = model_dir.joinpath(run_id).with_suffix(".pt")
metadata_fpath = syn_dir.joinpath("train.txt")
print("Checkpoint path: {}".format(weights_fpath))
print("Loading training data from: {}".format(metadata_fpath))
print("Using model: Tacotron")
# Book keeping
step = 0
time_window = ValueWindow(100)
loss_window = ValueWindow(100)
# From WaveRNN/train_tacotron.py
if torch.cuda.is_available():
device = torch.device("cuda")
for session in hparams.tts_schedule:
_, _, _, batch_size = session
if batch_size % torch.cuda.device_count() != 0:
raise ValueError("`batch_size` must be evenly divisible by n_gpus!")
else:
device = torch.device("cpu")
print("Using device:", device)
# Instantiate Tacotron Model
print("\nInitialising Tacotron Model...\n")
num_chars = len(symbols)
if weights_fpath.exists():
# for compatibility purpose, change symbols accordingly:
loaded_shape = torch.load(str(weights_fpath), map_location=device)["model_state"]["encoder.embedding.weight"].shape
if num_chars != loaded_shape[0]:
print("WARNING: you are using compatible mode due to wrong sympols length, please modify varible _characters in `utils\symbols.py`")
num_chars != loaded_shape[0]
# Try to scan config file
model_config_fpaths = list(weights_fpath.parent.rglob("*.json"))
if len(model_config_fpaths)>0 and model_config_fpaths[0].exists():
with model_config_fpaths[0].open("r", encoding="utf-8") as f:
hparams.loadJson(json.load(f))
else: # save a config
hparams.dumpJson(weights_fpath.parent.joinpath(run_id).with_suffix(".json"))
model = Tacotron(embed_dims=hparams.tts_embed_dims,
num_chars=num_chars,
encoder_dims=hparams.tts_encoder_dims,
decoder_dims=hparams.tts_decoder_dims,
n_mels=hparams.num_mels,
fft_bins=hparams.num_mels,
postnet_dims=hparams.tts_postnet_dims,
encoder_K=hparams.tts_encoder_K,
lstm_dims=hparams.tts_lstm_dims,
postnet_K=hparams.tts_postnet_K,
num_highways=hparams.tts_num_highways,
dropout=hparams.tts_dropout,
stop_threshold=hparams.tts_stop_threshold,
speaker_embedding_size=hparams.speaker_embedding_size).to(device)
# Initialize the optimizer
optimizer = optim.Adam(model.parameters(), amsgrad=True)
# Load the weights
if force_restart or not weights_fpath.exists():
print("\nStarting the training of Tacotron from scratch\n")
model.save(weights_fpath)
# Embeddings metadata
char_embedding_fpath = meta_folder.joinpath("CharacterEmbeddings.tsv")
with open(char_embedding_fpath, "w", encoding="utf-8") as f:
for symbol in symbols:
if symbol == " ":
symbol = "\\s" # For visual purposes, swap space with \s
f.write("{}\n".format(symbol))
else:
print("\nLoading weights at %s" % weights_fpath)
model.load(weights_fpath, device, optimizer)
print("Tacotron weights loaded from step %d" % model.step)
# Initialize the dataset
metadata_fpath = syn_dir.joinpath("train.txt")
mel_dir = syn_dir.joinpath("mels")
embed_dir = syn_dir.joinpath("embeds")
dataset = SynthesizerDataset(metadata_fpath, mel_dir, embed_dir, hparams)
test_loader = DataLoader(dataset,
batch_size=1,
shuffle=True,
pin_memory=True)
# tracing training step
sw = SummaryWriter(log_dir=model_dir.joinpath("logs"))
for i, session in enumerate(hparams.tts_schedule):
current_step = model.get_step()
r, lr, max_step, batch_size = session
training_steps = max_step - current_step
# Do we need to change to the next session?
if current_step >= max_step:
# Are there no further sessions than the current one?
if i == len(hparams.tts_schedule) - 1:
# We have completed training. Save the model and exit
model.save(weights_fpath, optimizer)
break
else:
# There is a following session, go to it
continue
model.r = r
# Begin the training
simple_table([(f"Steps with r={r}", str(training_steps // 1000) + "k Steps"),
("Batch Size", batch_size),
("Learning Rate", lr),
("Outputs/Step (r)", model.r)])
for p in optimizer.param_groups:
p["lr"] = lr
if hparams.tts_finetune_layers is not None and len(hparams.tts_finetune_layers) > 0:
model.finetune_partial(hparams.tts_finetune_layers)
data_loader = DataLoader(dataset,
collate_fn=collate_synthesizer,
batch_size=batch_size, #change if you got graphic card OOM
num_workers=2,
shuffle=True,
pin_memory=True)
total_iters = len(dataset)
steps_per_epoch = np.ceil(total_iters / batch_size).astype(np.int32)
epochs = np.ceil(training_steps / steps_per_epoch).astype(np.int32)
for epoch in range(1, epochs+1):
for i, (texts, mels, embeds, idx) in enumerate(data_loader, 1):
start_time = time.time()
# Generate stop tokens for training
stop = torch.ones(mels.shape[0], mels.shape[2])
for j, k in enumerate(idx):
stop[j, :int(dataset.metadata[k][4])-1] = 0
texts = texts.to(device)
mels = mels.to(device)
embeds = embeds.to(device)
stop = stop.to(device)
# Forward pass
# Parallelize model onto GPUS using workaround due to python bug
if device.type == "cuda" and torch.cuda.device_count() > 1:
m1_hat, m2_hat, attention, stop_pred = data_parallel_workaround(model, texts,
mels, embeds)
else:
m1_hat, m2_hat, attention, stop_pred = model(texts, mels, embeds)
# Backward pass
m1_loss = F.mse_loss(m1_hat, mels) + F.l1_loss(m1_hat, mels)
m2_loss = F.mse_loss(m2_hat, mels)
stop_loss = F.binary_cross_entropy(stop_pred, stop)
loss = m1_loss + m2_loss + stop_loss
optimizer.zero_grad()
loss.backward()
if hparams.tts_clip_grad_norm is not None:
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), hparams.tts_clip_grad_norm)
if np.isnan(grad_norm.cpu()):
print("grad_norm was NaN!")
optimizer.step()
time_window.append(time.time() - start_time)
loss_window.append(loss.item())
step = model.get_step()
k = step // 1000
msg = f"| Epoch: {epoch}/{epochs} ({i}/{steps_per_epoch}) | Loss: {loss_window.average:#.4} | {1./time_window.average:#.2} steps/s | Step: {k}k | "
stream(msg)
if log_every != 0 and step % log_every == 0 :
sw.add_scalar("training/loss", loss_window.average, step)
# Backup or save model as appropriate
if backup_every != 0 and step % backup_every == 0 :
backup_fpath = Path("{}/{}_{}.pt".format(str(weights_fpath.parent), run_id, step))
model.save(backup_fpath, optimizer)
if save_every != 0 and step % save_every == 0 :
# Must save latest optimizer state to ensure that resuming training
# doesn't produce artifacts
model.save(weights_fpath, optimizer)
# Evaluate model to generate samples
epoch_eval = hparams.tts_eval_interval == -1 and i == steps_per_epoch # If epoch is done
step_eval = hparams.tts_eval_interval > 0 and step % hparams.tts_eval_interval == 0 # Every N steps
if epoch_eval or step_eval:
for sample_idx in range(hparams.tts_eval_num_samples):
# At most, generate samples equal to number in the batch
if sample_idx + 1 <= len(texts):
# Remove padding from mels using frame length in metadata
mel_length = int(dataset.metadata[idx[sample_idx]][4])
mel_prediction = np_now(m2_hat[sample_idx]).T[:mel_length]
target_spectrogram = np_now(mels[sample_idx]).T[:mel_length]
attention_len = mel_length // model.r
# eval_loss = F.mse_loss(mel_prediction, target_spectrogram)
# sw.add_scalar("validing/loss", eval_loss.item(), step)
eval_model(attention=np_now(attention[sample_idx][:, :attention_len]),
mel_prediction=mel_prediction,
target_spectrogram=target_spectrogram,
input_seq=np_now(texts[sample_idx]),
step=step,
plot_dir=plot_dir,
mel_output_dir=mel_output_dir,
wav_dir=wav_dir,
sample_num=sample_idx + 1,
loss=loss,
hparams=hparams,
sw=sw)
MAX_SAVED_COUNT = 20
if (step / hparams.tts_eval_interval) % MAX_SAVED_COUNT == 0:
# clean up and save last MAX_SAVED_COUNT;
plots = next(os.walk(plot_dir), (None, None, []))[2]
for plot in plots[-MAX_SAVED_COUNT:]:
os.remove(plot_dir.joinpath(plot))
mel_files = next(os.walk(mel_output_dir), (None, None, []))[2]
for mel_file in mel_files[-MAX_SAVED_COUNT:]:
os.remove(mel_output_dir.joinpath(mel_file))
wavs = next(os.walk(wav_dir), (None, None, []))[2]
for w in wavs[-MAX_SAVED_COUNT:]:
os.remove(wav_dir.joinpath(w))
# Break out of loop to update training schedule
if step >= max_step:
break
# Add line break after every epoch
print("")
def eval_model(attention, mel_prediction, target_spectrogram, input_seq, step,
plot_dir, mel_output_dir, wav_dir, sample_num, loss, hparams, sw):
# Save some results for evaluation
attention_path = str(plot_dir.joinpath("attention_step_{}_sample_{}".format(step, sample_num)))
# save_attention(attention, attention_path)
save_and_trace_attention(attention, attention_path, sw, step)
# save predicted mel spectrogram to disk (debug)
mel_output_fpath = mel_output_dir.joinpath("mel-prediction-step-{}_sample_{}.npy".format(step, sample_num))
np.save(str(mel_output_fpath), mel_prediction, allow_pickle=False)
# save griffin lim inverted wav for debug (mel -> wav)
wav = audio.inv_mel_spectrogram(mel_prediction.T, hparams)
wav_fpath = wav_dir.joinpath("step-{}-wave-from-mel_sample_{}.wav".format(step, sample_num))
audio.save_wav(wav, str(wav_fpath), sr=hparams.sample_rate)
# save real and predicted mel-spectrogram plot to disk (control purposes)
spec_fpath = plot_dir.joinpath("step-{}-mel-spectrogram_sample_{}.png".format(step, sample_num))
title_str = "{}, {}, step={}, loss={:.5f}".format("Tacotron", time_string(), step, loss)
# plot_spectrogram(mel_prediction, str(spec_fpath), title=title_str,
# target_spectrogram=target_spectrogram,
# max_len=target_spectrogram.size // hparams.num_mels)
plot_spectrogram_and_trace(
mel_prediction,
str(spec_fpath),
title=title_str,
target_spectrogram=target_spectrogram,
max_len=target_spectrogram.size // hparams.num_mels,
sw=sw,
step=step)
print("Input at step {}: {}".format(step, sequence_to_text(input_seq)))