import os from loguru import logger import torch import glob from torch.nn import functional as F from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel as DDP from torch.cuda.amp import autocast, GradScaler from utils.audio_utils import mel_spectrogram, spec_to_mel from utils.loss import feature_loss, generator_loss, discriminator_loss, kl_loss from utils.util import slice_segments, clip_grad_value_ from models.synthesizer.vits_dataset import ( VitsDataset, VitsDatasetCollate, DistributedBucketSampler ) from models.synthesizer.models.vits import ( Vits, MultiPeriodDiscriminator, ) from models.synthesizer.utils.symbols import symbols from models.synthesizer.utils.plot import plot_spectrogram_to_numpy, plot_alignment_to_numpy from pathlib import Path from utils.hparams import HParams import torch.multiprocessing as mp import argparse # torch.backends.cudnn.benchmark = True global_step = 0 def new_train(): """Assume Single Node Multi GPUs Training Only""" assert torch.cuda.is_available(), "CPU training is not allowed." parser = argparse.ArgumentParser() parser.add_argument("--syn_dir", type=str, default="../audiodata/SV2TTS/synthesizer", help= \ "Path to the synthesizer directory that contains the ground truth mel spectrograms, " "the wavs, the emos and the embeds.") parser.add_argument("-m", "--model_dir", type=str, default="data/ckpt/synthesizer/vits2", help=\ "Path to the output directory that will contain the saved model weights and the logs.") parser.add_argument('--ckptG', type=str, required=False, help='original VITS G checkpoint path') parser.add_argument('--ckptD', type=str, required=False, help='original VITS D checkpoint path') args, _ = parser.parse_known_args() datasets_root = Path(args.syn_dir) hparams= HParams( model_dir = args.model_dir, ) hparams.loadJson(Path(hparams.model_dir).joinpath("config.json")) hparams.data["training_files"] = str(datasets_root.joinpath("train.txt")) hparams.data["validation_files"] = str(datasets_root.joinpath("train.txt")) hparams.data["datasets_root"] = str(datasets_root) hparams.ckptG = args.ckptG hparams.ckptD = args.ckptD n_gpus = torch.cuda.device_count() # for spawn os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '8899' # mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hparams)) run(0, 1, hparams) def load_checkpoint(checkpoint_path, model, optimizer=None, is_old=False, epochs=10000): assert os.path.isfile(checkpoint_path) checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') iteration = checkpoint_dict['iteration'] learning_rate = checkpoint_dict['learning_rate'] if optimizer is not None: if not is_old: optimizer.load_state_dict(checkpoint_dict['optimizer']) else: new_opt_dict = optimizer.state_dict() new_opt_dict_params = new_opt_dict['param_groups'][0]['params'] new_opt_dict['param_groups'] = checkpoint_dict['optimizer']['param_groups'] new_opt_dict['param_groups'][0]['params'] = new_opt_dict_params optimizer.load_state_dict(new_opt_dict) saved_state_dict = checkpoint_dict['model'] if hasattr(model, 'module'): state_dict = model.module.state_dict() else: state_dict = model.state_dict() new_state_dict= {} for k, v in state_dict.items(): try: new_state_dict[k] = saved_state_dict[k] except: if k == 'step': new_state_dict[k] = iteration * epochs else: logger.info("%s is not in the checkpoint" % k) new_state_dict[k] = v if hasattr(model, 'module'): model.module.load_state_dict(new_state_dict, strict=False) else: model.load_state_dict(new_state_dict, strict=False) logger.info("Loaded checkpoint '{}' (iteration {})" .format( checkpoint_path, iteration)) return model, optimizer, learning_rate, iteration def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path): logger.info("Saving model and optimizer state at iteration {} to {}".format( iteration, checkpoint_path)) if hasattr(model, 'module'): state_dict = model.module.state_dict() else: state_dict = model.state_dict() torch.save({'model': state_dict, 'iteration': iteration, 'optimizer': optimizer.state_dict(), 'learning_rate': learning_rate}, checkpoint_path) def latest_checkpoint_path(dir_path, regex="G_*.pth"): f_list = glob.glob(os.path.join(dir_path, regex)) f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f)))) x = f_list[-1] print(x) return x def run(rank, n_gpus, hps): global global_step if rank == 0: logger.info(hps) writer = SummaryWriter(log_dir=hps.model_dir) writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval")) dist.init_process_group(backend='gloo', init_method='env://', world_size=n_gpus, rank=rank) torch.manual_seed(hps.train.seed) torch.cuda.set_device(rank) train_dataset = VitsDataset(hps.data.training_files, hps.data) train_sampler = DistributedBucketSampler( train_dataset, hps.train.batch_size, [32, 300, 400, 500, 600, 700, 800, 900, 1000], num_replicas=n_gpus, rank=rank, shuffle=True) collate_fn = VitsDatasetCollate() train_loader = DataLoader(train_dataset, num_workers=8, shuffle=False, pin_memory=True, collate_fn=collate_fn, batch_sampler=train_sampler) if rank == 0: eval_dataset = VitsDataset(hps.data.validation_files, hps.data) eval_loader = DataLoader(eval_dataset, num_workers=8, shuffle=False, batch_size=hps.train.batch_size, pin_memory=True, drop_last=False, collate_fn=collate_fn) net_g = Vits( len(symbols), hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, **hps.model).cuda(rank) net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank) optim_g = torch.optim.AdamW( net_g.parameters(), hps.train.learning_rate, betas=hps.train.betas, eps=hps.train.eps) optim_d = torch.optim.AdamW( net_d.parameters(), hps.train.learning_rate, betas=hps.train.betas, eps=hps.train.eps) net_g = DDP(net_g, device_ids=[rank]) net_d = DDP(net_d, device_ids=[rank]) ckptG = hps.ckptG ckptD = hps.ckptD try: if ckptG is not None: _, _, _, epoch_str = load_checkpoint(ckptG, net_g, optim_g, is_old=True) print("加载原版VITS模型G记录点成功") else: _, _, _, epoch_str = load_checkpoint(latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g, epochs=hps.train.epochs) if ckptD is not None: _, _, _, epoch_str = load_checkpoint(ckptG, net_g, optim_g, is_old=True) print("加载原版VITS模型D记录点成功") else: _, _, _, epoch_str = load_checkpoint(latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d, epochs=hps.train.epochs) global_step = (epoch_str - 1) * len(train_loader) except: epoch_str = 1 global_step = 0 if ckptG is not None or ckptD is not None: epoch_str = 1 global_step = 0 scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2) scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2) scaler = GradScaler(enabled=hps.train.fp16_run) for epoch in range(epoch_str, hps.train.epochs + 1): if rank == 0: train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval]) else: train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None) scheduler_g.step() scheduler_d.step() def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers): net_g, net_d = nets optim_g, optim_d = optims scheduler_g, scheduler_d = schedulers train_loader, eval_loader = loaders if writers is not None: writer, writer_eval = writers train_loader.batch_sampler.set_epoch(epoch) global global_step net_g.train() net_d.train() for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers, emo) in enumerate(train_loader): # logger.info(f'====> Step: 1 {batch_idx}') x, x_lengths = x.cuda(rank), x_lengths.cuda(rank) spec, spec_lengths = spec.cuda(rank), spec_lengths.cuda(rank) y, y_lengths = y.cuda(rank), y_lengths.cuda(rank) speakers = speakers.cuda(rank) emo = emo.cuda(rank) # logger.info(f'====> Step: 1.0 {batch_idx}') with autocast(enabled=hps.train.fp16_run): y_hat, l_length, attn, ids_slice, x_mask, z_mask, \ (z, z_p, m_p, logs_p, m_q, logs_q) = net_g(x, x_lengths, spec, spec_lengths, speakers, emo) # logger.info(f'====> Step: 1.1 {batch_idx}') mel = spec_to_mel( spec, hps.data.filter_length, hps.data.n_mel_channels, hps.data.sampling_rate, hps.data.mel_fmin, hps.data.mel_fmax) y_mel = slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length) y_hat_mel = mel_spectrogram( y_hat.squeeze(1), hps.data.filter_length, hps.data.n_mel_channels, hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length, hps.data.mel_fmin, hps.data.mel_fmax ) y = slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice # logger.info(f'====> Step: 1.3 {batch_idx}') # Discriminator y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach()) with autocast(enabled=False): loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g) loss_disc_all = loss_disc optim_d.zero_grad() scaler.scale(loss_disc_all).backward() scaler.unscale_(optim_d) grad_norm_d = clip_grad_value_(net_d.parameters(), None) scaler.step(optim_d) with autocast(enabled=hps.train.fp16_run): # Generator y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat) with autocast(enabled=False): loss_dur = torch.sum(l_length.float()) loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl loss_fm = feature_loss(fmap_r, fmap_g) loss_gen, losses_gen = generator_loss(y_d_hat_g) loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl optim_g.zero_grad() scaler.scale(loss_gen_all.float()).backward() scaler.unscale_(optim_g) grad_norm_g = clip_grad_value_(net_g.parameters(), None) scaler.step(optim_g) scaler.update() if rank == 0: if global_step % hps.train.log_interval == 0: lr = optim_g.param_groups[0]['lr'] losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl] logger.info('Train Epoch: {} [{:.0f}%]'.format( epoch, 100. * batch_idx / len(train_loader))) logger.info([x.item() for x in losses] + [global_step, lr]) scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g} scalar_dict.update( {"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/dur": loss_dur, "loss/g/kl": loss_kl}) scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}) scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)}) scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)}) image_dict = { "slice/mel_org": plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()), "slice/mel_gen": plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()), "all/mel": plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()), "all/attn": plot_alignment_to_numpy(attn[0, 0].data.cpu().numpy()) } summarize( writer=writer, global_step=global_step, images=image_dict, scalars=scalar_dict) if global_step % hps.train.eval_interval == 0: evaluate(hps, net_g, eval_loader, writer_eval) save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step))) save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pth".format(global_step))) global_step += 1 if rank == 0: logger.info('====> Epoch: {}'.format(epoch)) def evaluate(hps, generator, eval_loader, writer_eval): generator.eval() with torch.no_grad(): for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers, emo) in enumerate(eval_loader): x, x_lengths = x.cuda(0), x_lengths.cuda(0) spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0) y, y_lengths = y.cuda(0), y_lengths.cuda(0) speakers = speakers.cuda(0) emo = emo.cuda(0) # remove else x = x[:1] x_lengths = x_lengths[:1] spec = spec[:1] spec_lengths = spec_lengths[:1] y = y[:1] y_lengths = y_lengths[:1] speakers = speakers[:1] emo = emo[:1] break y_hat, attn, mask, *_ = generator.module.infer(x, x_lengths, speakers, emo, max_len=1000) # y_hat, attn, mask, *_ = generator.infer(x, x_lengths, speakers, emo, max_len=1000) # for non DistributedDataParallel object y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length mel = spec_to_mel( spec, hps.data.filter_length, hps.data.n_mel_channels, hps.data.sampling_rate, hps.data.mel_fmin, hps.data.mel_fmax) y_hat_mel = mel_spectrogram( y_hat.squeeze(1).float(), hps.data.filter_length, hps.data.n_mel_channels, hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length, hps.data.mel_fmin, hps.data.mel_fmax ) image_dict = { "gen/mel": plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy()) } audio_dict = { "gen/audio": y_hat[0, :, :y_hat_lengths[0]] } if global_step == 0: image_dict.update({"gt/mel": plot_spectrogram_to_numpy(mel[0].cpu().numpy())}) audio_dict.update({"gt/audio": y[0, :, :y_lengths[0]]}) summarize( writer=writer_eval, global_step=global_step, images=image_dict, audios=audio_dict, audio_sampling_rate=hps.data.sampling_rate ) generator.train() def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050): for k, v in scalars.items(): writer.add_scalar(k, v, global_step) for k, v in histograms.items(): writer.add_histogram(k, v, global_step) for k, v in images.items(): writer.add_image(k, v, global_step, dataformats='HWC') for k, v in audios.items(): writer.add_audio(k, v, global_step, audio_sampling_rate)