import librosa import librosa.filters import numpy as np from scipy import signal from scipy.io import wavfile import soundfile as sf def load_wav(path, sr): return librosa.core.load(path, sr=sr)[0] def save_wav(wav, path, sr): wav *= 32767 / max(0.01, np.max(np.abs(wav))) #proposed by @dsmiller wavfile.write(path, sr, wav.astype(np.int16)) def save_wavenet_wav(wav, path, sr): sf.write(path, wav.astype(np.float32), sr) def preemphasis(wav, k, preemphasize=True): if preemphasize: return signal.lfilter([1, -k], [1], wav) return wav def inv_preemphasis(wav, k, inv_preemphasize=True): if inv_preemphasize: return signal.lfilter([1], [1, -k], wav) return wav #From https://github.com/r9y9/wavenet_vocoder/blob/master/audio.py def start_and_end_indices(quantized, silence_threshold=2): for start in range(quantized.size): if abs(quantized[start] - 127) > silence_threshold: break for end in range(quantized.size - 1, 1, -1): if abs(quantized[end] - 127) > silence_threshold: break assert abs(quantized[start] - 127) > silence_threshold assert abs(quantized[end] - 127) > silence_threshold return start, end def get_hop_size(hparams): hop_size = hparams.hop_size if hop_size is None: assert hparams.frame_shift_ms is not None hop_size = int(hparams.frame_shift_ms / 1000 * hparams.sample_rate) return hop_size def linearspectrogram(wav, hparams): D = _stft(preemphasis(wav, hparams.preemphasis, hparams.preemphasize), hparams) S = _amp_to_db(np.abs(D), hparams) - hparams.ref_level_db if hparams.signal_normalization: return _normalize(S, hparams) return S def melspectrogram(wav, hparams): D = _stft(preemphasis(wav, hparams.preemphasis, hparams.preemphasize), hparams) S = _amp_to_db(_linear_to_mel(np.abs(D), hparams), hparams) - hparams.ref_level_db if hparams.signal_normalization: return _normalize(S, hparams) return S def inv_linear_spectrogram(linear_spectrogram, hparams): """Converts linear spectrogram to waveform using librosa""" if hparams.signal_normalization: D = _denormalize(linear_spectrogram, hparams) else: D = linear_spectrogram S = _db_to_amp(D + hparams.ref_level_db) #Convert back to linear if hparams.use_lws: processor = _lws_processor(hparams) D = processor.run_lws(S.astype(np.float64).T ** hparams.power) y = processor.istft(D).astype(np.float32) return inv_preemphasis(y, hparams.preemphasis, hparams.preemphasize) else: return inv_preemphasis(_griffin_lim(S ** hparams.power, hparams), hparams.preemphasis, hparams.preemphasize) def inv_mel_spectrogram(mel_spectrogram, hparams): """Converts mel spectrogram to waveform using librosa""" if hparams.signal_normalization: D = _denormalize(mel_spectrogram, hparams) else: D = mel_spectrogram S = _mel_to_linear(_db_to_amp(D + hparams.ref_level_db), hparams) # Convert back to linear if hparams.use_lws: processor = _lws_processor(hparams) D = processor.run_lws(S.astype(np.float64).T ** hparams.power) y = processor.istft(D).astype(np.float32) return inv_preemphasis(y, hparams.preemphasis, hparams.preemphasize) else: return inv_preemphasis(_griffin_lim(S ** hparams.power, hparams), hparams.preemphasis, hparams.preemphasize) def _lws_processor(hparams): import lws return lws.lws(hparams.n_fft, get_hop_size(hparams), fftsize=hparams.win_size, mode="speech") def _griffin_lim(S, hparams): """librosa implementation of Griffin-Lim Based on https://github.com/librosa/librosa/issues/434 """ angles = np.exp(2j * np.pi * np.random.rand(*S.shape)) S_complex = np.abs(S).astype(complex) y = _istft(S_complex * angles, hparams) for i in range(hparams.griffin_lim_iters): angles = np.exp(1j * np.angle(_stft(y, hparams))) y = _istft(S_complex * angles, hparams) return y def _stft(y, hparams): if hparams.use_lws: return _lws_processor(hparams).stft(y).T else: return librosa.stft(y=y, n_fft=hparams.n_fft, hop_length=get_hop_size(hparams), win_length=hparams.win_size) def _istft(y, hparams): return librosa.istft(y, hop_length=get_hop_size(hparams), win_length=hparams.win_size) ########################################################## #Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!) def num_frames(length, fsize, fshift): """Compute number of time frames of spectrogram """ pad = (fsize - fshift) if length % fshift == 0: M = (length + pad * 2 - fsize) // fshift + 1 else: M = (length + pad * 2 - fsize) // fshift + 2 return M def pad_lr(x, fsize, fshift): """Compute left and right padding """ M = num_frames(len(x), fsize, fshift) pad = (fsize - fshift) T = len(x) + 2 * pad r = (M - 1) * fshift + fsize - T return pad, pad + r ########################################################## #Librosa correct padding def librosa_pad_lr(x, fsize, fshift): return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0] # Conversions _mel_basis = None _inv_mel_basis = None def _linear_to_mel(spectogram, hparams): global _mel_basis if _mel_basis is None: _mel_basis = _build_mel_basis(hparams) return np.dot(_mel_basis, spectogram) def _mel_to_linear(mel_spectrogram, hparams): global _inv_mel_basis if _inv_mel_basis is None: _inv_mel_basis = np.linalg.pinv(_build_mel_basis(hparams)) return np.maximum(1e-10, np.dot(_inv_mel_basis, mel_spectrogram)) def _build_mel_basis(hparams): assert hparams.fmax <= hparams.sample_rate // 2 return librosa.filters.mel(sr=hparams.sample_rate, n_fft=hparams.n_fft, n_mels=hparams.num_mels, fmin=hparams.fmin, fmax=hparams.fmax) def _amp_to_db(x, hparams): min_level = np.exp(hparams.min_level_db / 20 * np.log(10)) return 20 * np.log10(np.maximum(min_level, x)) def _db_to_amp(x): return np.power(10.0, (x) * 0.05) def _normalize(S, hparams): if hparams.allow_clipping_in_normalization: if hparams.symmetric_mels: return np.clip((2 * hparams.max_abs_value) * ((S - hparams.min_level_db) / (-hparams.min_level_db)) - hparams.max_abs_value, -hparams.max_abs_value, hparams.max_abs_value) else: return np.clip(hparams.max_abs_value * ((S - hparams.min_level_db) / (-hparams.min_level_db)), 0, hparams.max_abs_value) assert S.max() <= 0 and S.min() - hparams.min_level_db >= 0 if hparams.symmetric_mels: return (2 * hparams.max_abs_value) * ((S - hparams.min_level_db) / (-hparams.min_level_db)) - hparams.max_abs_value else: return hparams.max_abs_value * ((S - hparams.min_level_db) / (-hparams.min_level_db)) def _denormalize(D, hparams): if hparams.allow_clipping_in_normalization: if hparams.symmetric_mels: return (((np.clip(D, -hparams.max_abs_value, hparams.max_abs_value) + hparams.max_abs_value) * -hparams.min_level_db / (2 * hparams.max_abs_value)) + hparams.min_level_db) else: return ((np.clip(D, 0, hparams.max_abs_value) * -hparams.min_level_db / hparams.max_abs_value) + hparams.min_level_db) if hparams.symmetric_mels: return (((D + hparams.max_abs_value) * -hparams.min_level_db / (2 * hparams.max_abs_value)) + hparams.min_level_db) else: return ((D * -hparams.min_level_db / hparams.max_abs_value) + hparams.min_level_db)