from utils.argutils import print_args from vocoder.wavernn.train import train from vocoder.hifigan.train import train as train_hifigan from vocoder.fregan.train import train as train_fregan from utils.util import AttrDict from pathlib import Path import argparse import json if __name__ == "__main__": parser = argparse.ArgumentParser( description="Trains the vocoder from the synthesizer audios and the GTA synthesized mels, " "or ground truth mels.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("run_id", type=str, help= \ "Name for this model instance. If a model state from the same run ID was previously " "saved, the training will restart from there. Pass -f to overwrite saved states and " "restart from scratch.") parser.add_argument("datasets_root", type=str, help= \ "Path to the directory containing your SV2TTS directory. Specifying --syn_dir or --voc_dir " "will take priority over this argument.") parser.add_argument("vocoder_type", type=str, default="wavernn", help= \ "Choose the vocoder type for train. Defaults to wavernn" "Now, Support and for choose") parser.add_argument("--syn_dir", type=str, default=argparse.SUPPRESS, help= \ "Path to the synthesizer directory that contains the ground truth mel spectrograms, " "the wavs and the embeds. Defaults to /SV2TTS/synthesizer/.") parser.add_argument("--voc_dir", type=str, default=argparse.SUPPRESS, help= \ "Path to the vocoder directory that contains the GTA synthesized mel spectrograms. " "Defaults to /SV2TTS/vocoder/. Unused if --ground_truth is passed.") parser.add_argument("-m", "--models_dir", type=str, default="vocoder/saved_models/", help=\ "Path to the directory that will contain the saved model weights, as well as backups " "of those weights and wavs generated during training.") parser.add_argument("-g", "--ground_truth", action="store_true", help= \ "Train on ground truth spectrograms (/SV2TTS/synthesizer/mels).") parser.add_argument("-s", "--save_every", type=int, default=1000, help= \ "Number of steps between updates of the model on the disk. Set to 0 to never save the " "model.") parser.add_argument("-b", "--backup_every", type=int, default=25000, help= \ "Number of steps between backups of the model. Set to 0 to never make backups of the " "model.") parser.add_argument("-f", "--force_restart", action="store_true", help= \ "Do not load any saved model and restart from scratch.") parser.add_argument("--config", type=str, default="vocoder/hifigan/config_16k_.json") args = parser.parse_args() if not hasattr(args, "syn_dir"): args.syn_dir = Path(args.datasets_root, "SV2TTS", "synthesizer") args.syn_dir = Path(args.syn_dir) if not hasattr(args, "voc_dir"): args.voc_dir = Path(args.datasets_root, "SV2TTS", "vocoder") args.voc_dir = Path(args.voc_dir) del args.datasets_root args.models_dir = Path(args.models_dir) args.models_dir.mkdir(exist_ok=True) print_args(args, parser) # Process the arguments if args.vocoder_type == "wavernn": # Run the training wavernn delattr(args, 'vocoder_type') delattr(args, 'config') train(**vars(args)) elif args.vocoder_type == "hifigan": with open(args.config) as f: json_config = json.load(f) h = AttrDict(json_config) train_hifigan(0, args, h) elif args.vocoder_type == "fregan": with open('vocoder/fregan/config.json') as f: json_config = json.load(f) h = AttrDict(json_config) train_fregan(0, args, h)