import torch import torch.nn.functional as F import torch.nn as nn from torch.nn import Conv1d, AvgPool1d, Conv2d from torch.nn.utils import weight_norm, spectral_norm from vocoder.fregan.utils import get_padding from vocoder.fregan.stft_loss import stft from vocoder.fregan.dwt import DWT_1D LRELU_SLOPE = 0.1 class SpecDiscriminator(nn.Module): """docstring for Discriminator.""" def __init__(self, fft_size=1024, shift_size=120, win_length=600, window="hann_window", use_spectral_norm=False): super(SpecDiscriminator, self).__init__() norm_f = weight_norm if use_spectral_norm == False else spectral_norm self.fft_size = fft_size self.shift_size = shift_size self.win_length = win_length self.window = getattr(torch, window)(win_length) self.discriminators = nn.ModuleList([ norm_f(nn.Conv2d(1, 32, kernel_size=(3, 9), padding=(1, 4))), norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))), norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))), norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))), norm_f(nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(1,1), padding=(1, 1))), ]) self.out = norm_f(nn.Conv2d(32, 1, 3, 1, 1)) def forward(self, y): fmap = [] with torch.no_grad(): y = y.squeeze(1) y = stft(y, self.fft_size, self.shift_size, self.win_length, self.window.to(y.get_device())) y = y.unsqueeze(1) for i, d in enumerate(self.discriminators): y = d(y) y = F.leaky_relu(y, LRELU_SLOPE) fmap.append(y) y = self.out(y) fmap.append(y) return torch.flatten(y, 1, -1), fmap class MultiResSpecDiscriminator(torch.nn.Module): def __init__(self, fft_sizes=[1024, 2048, 512], hop_sizes=[120, 240, 50], win_lengths=[600, 1200, 240], window="hann_window"): super(MultiResSpecDiscriminator, self).__init__() self.discriminators = nn.ModuleList([ SpecDiscriminator(fft_sizes[0], hop_sizes[0], win_lengths[0], window), SpecDiscriminator(fft_sizes[1], hop_sizes[1], win_lengths[1], window), SpecDiscriminator(fft_sizes[2], hop_sizes[2], win_lengths[2], window) ]) def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs class DiscriminatorP(torch.nn.Module): def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): super(DiscriminatorP, self).__init__() self.period = period norm_f = weight_norm if use_spectral_norm == False else spectral_norm self.dwt1d = DWT_1D() self.dwt_conv1 = norm_f(Conv1d(2, 1, 1)) self.dwt_proj1 = norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))) self.dwt_conv2 = norm_f(Conv1d(4, 1, 1)) self.dwt_proj2 = norm_f(Conv2d(1, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))) self.dwt_conv3 = norm_f(Conv1d(8, 1, 1)) self.dwt_proj3 = norm_f(Conv2d(1, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))) self.convs = nn.ModuleList([ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))), ]) self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) def forward(self, x): fmap = [] # DWT 1 x_d1_high1, x_d1_low1 = self.dwt1d(x) x_d1 = self.dwt_conv1(torch.cat([x_d1_high1, x_d1_low1], dim=1)) # 1d to 2d b, c, t = x_d1.shape if t % self.period != 0: # pad first n_pad = self.period - (t % self.period) x_d1 = F.pad(x_d1, (0, n_pad), "reflect") t = t + n_pad x_d1 = x_d1.view(b, c, t // self.period, self.period) x_d1 = self.dwt_proj1(x_d1) # DWT 2 x_d2_high1, x_d2_low1 = self.dwt1d(x_d1_high1) x_d2_high2, x_d2_low2 = self.dwt1d(x_d1_low1) x_d2 = self.dwt_conv2(torch.cat([x_d2_high1, x_d2_low1, x_d2_high2, x_d2_low2], dim=1)) # 1d to 2d b, c, t = x_d2.shape if t % self.period != 0: # pad first n_pad = self.period - (t % self.period) x_d2 = F.pad(x_d2, (0, n_pad), "reflect") t = t + n_pad x_d2 = x_d2.view(b, c, t // self.period, self.period) x_d2 = self.dwt_proj2(x_d2) # DWT 3 x_d3_high1, x_d3_low1 = self.dwt1d(x_d2_high1) x_d3_high2, x_d3_low2 = self.dwt1d(x_d2_low1) x_d3_high3, x_d3_low3 = self.dwt1d(x_d2_high2) x_d3_high4, x_d3_low4 = self.dwt1d(x_d2_low2) x_d3 = self.dwt_conv3( torch.cat([x_d3_high1, x_d3_low1, x_d3_high2, x_d3_low2, x_d3_high3, x_d3_low3, x_d3_high4, x_d3_low4], dim=1)) # 1d to 2d b, c, t = x_d3.shape if t % self.period != 0: # pad first n_pad = self.period - (t % self.period) x_d3 = F.pad(x_d3, (0, n_pad), "reflect") t = t + n_pad x_d3 = x_d3.view(b, c, t // self.period, self.period) x_d3 = self.dwt_proj3(x_d3) # 1d to 2d b, c, t = x.shape if t % self.period != 0: # pad first n_pad = self.period - (t % self.period) x = F.pad(x, (0, n_pad), "reflect") t = t + n_pad x = x.view(b, c, t // self.period, self.period) i = 0 for l in self.convs: x = l(x) x = F.leaky_relu(x, LRELU_SLOPE) fmap.append(x) if i == 0: x = torch.cat([x, x_d1], dim=2) elif i == 1: x = torch.cat([x, x_d2], dim=2) elif i == 2: x = torch.cat([x, x_d3], dim=2) else: x = x i = i + 1 x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class ResWiseMultiPeriodDiscriminator(torch.nn.Module): def __init__(self): super(ResWiseMultiPeriodDiscriminator, self).__init__() self.discriminators = nn.ModuleList([ DiscriminatorP(2), DiscriminatorP(3), DiscriminatorP(5), DiscriminatorP(7), DiscriminatorP(11), ]) def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs class DiscriminatorS(torch.nn.Module): def __init__(self, use_spectral_norm=False): super(DiscriminatorS, self).__init__() norm_f = weight_norm if use_spectral_norm == False else spectral_norm self.dwt1d = DWT_1D() self.dwt_conv1 = norm_f(Conv1d(2, 128, 15, 1, padding=7)) self.dwt_conv2 = norm_f(Conv1d(4, 128, 41, 2, padding=20)) self.convs = nn.ModuleList([ norm_f(Conv1d(1, 128, 15, 1, padding=7)), norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)), norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)), norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)), norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)), norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)), norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), ]) self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) def forward(self, x): fmap = [] # DWT 1 x_d1_high1, x_d1_low1 = self.dwt1d(x) x_d1 = self.dwt_conv1(torch.cat([x_d1_high1, x_d1_low1], dim=1)) # DWT 2 x_d2_high1, x_d2_low1 = self.dwt1d(x_d1_high1) x_d2_high2, x_d2_low2 = self.dwt1d(x_d1_low1) x_d2 = self.dwt_conv2(torch.cat([x_d2_high1, x_d2_low1, x_d2_high2, x_d2_low2], dim=1)) i = 0 for l in self.convs: x = l(x) x = F.leaky_relu(x, LRELU_SLOPE) fmap.append(x) if i == 0: x = torch.cat([x, x_d1], dim=2) if i == 1: x = torch.cat([x, x_d2], dim=2) i = i + 1 x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class ResWiseMultiScaleDiscriminator(torch.nn.Module): def __init__(self, use_spectral_norm=False): super(ResWiseMultiScaleDiscriminator, self).__init__() norm_f = weight_norm if use_spectral_norm == False else spectral_norm self.dwt1d = DWT_1D() self.dwt_conv1 = norm_f(Conv1d(2, 1, 1)) self.dwt_conv2 = norm_f(Conv1d(4, 1, 1)) self.discriminators = nn.ModuleList([ DiscriminatorS(use_spectral_norm=True), DiscriminatorS(), DiscriminatorS(), ]) def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] # DWT 1 y_hi, y_lo = self.dwt1d(y) y_1 = self.dwt_conv1(torch.cat([y_hi, y_lo], dim=1)) x_d1_high1, x_d1_low1 = self.dwt1d(y_hat) y_hat_1 = self.dwt_conv1(torch.cat([x_d1_high1, x_d1_low1], dim=1)) # DWT 2 x_d2_high1, x_d2_low1 = self.dwt1d(y_hi) x_d2_high2, x_d2_low2 = self.dwt1d(y_lo) y_2 = self.dwt_conv2(torch.cat([x_d2_high1, x_d2_low1, x_d2_high2, x_d2_low2], dim=1)) x_d2_high1, x_d2_low1 = self.dwt1d(x_d1_high1) x_d2_high2, x_d2_low2 = self.dwt1d(x_d1_low1) y_hat_2 = self.dwt_conv2(torch.cat([x_d2_high1, x_d2_low1, x_d2_high2, x_d2_low2], dim=1)) for i, d in enumerate(self.discriminators): if i == 1: y = y_1 y_hat = y_hat_1 if i == 2: y = y_2 y_hat = y_hat_2 y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs