import librosa import numpy as np import torch from typing import Tuple from .nets_utils import make_pad_mask class LogMel(torch.nn.Module): """Convert STFT to fbank feats The arguments is same as librosa.filters.mel Args: fs: number > 0 [scalar] sampling rate of the incoming signal n_fft: int > 0 [scalar] number of FFT components n_mels: int > 0 [scalar] number of Mel bands to generate fmin: float >= 0 [scalar] lowest frequency (in Hz) fmax: float >= 0 [scalar] highest frequency (in Hz). If `None`, use `fmax = fs / 2.0` htk: use HTK formula instead of Slaney norm: {None, 1, np.inf} [scalar] if 1, divide the triangular mel weights by the width of the mel band (area normalization). Otherwise, leave all the triangles aiming for a peak value of 1.0 """ def __init__( self, fs: int = 16000, n_fft: int = 512, n_mels: int = 80, fmin: float = 0, fmax: float = None, htk: bool = False, norm=1, ): super().__init__() fmax = fs / 2 if fmax is None else fmax _mel_options = dict( sr=fs, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax, htk=htk, norm=norm ) self.mel_options = _mel_options # Note(kamo): The mel matrix of librosa is different from kaldi. melmat = librosa.filters.mel(**_mel_options) # melmat: (D2, D1) -> (D1, D2) self.register_buffer("melmat", torch.from_numpy(melmat.T).float()) inv_mel = np.linalg.pinv(melmat) self.register_buffer("inv_melmat", torch.from_numpy(inv_mel.T).float()) def extra_repr(self): return ", ".join(f"{k}={v}" for k, v in self.mel_options.items()) def forward( self, feat: torch.Tensor, ilens: torch.Tensor = None, ) -> Tuple[torch.Tensor, torch.Tensor]: # feat: (B, T, D1) x melmat: (D1, D2) -> mel_feat: (B, T, D2) mel_feat = torch.matmul(feat, self.melmat) logmel_feat = (mel_feat + 1e-20).log() # Zero padding if ilens is not None: logmel_feat = logmel_feat.masked_fill( make_pad_mask(ilens, logmel_feat, 1), 0.0 ) else: ilens = feat.new_full( [feat.size(0)], fill_value=feat.size(1), dtype=torch.long ) return logmel_feat, ilens