"""VGG2L definition for transformer-transducer.""" import torch class VGG2L(torch.nn.Module): """VGG2L module for transformer-transducer encoder.""" def __init__(self, idim, odim): """Construct a VGG2L object. Args: idim (int): dimension of inputs odim (int): dimension of outputs """ super(VGG2L, self).__init__() self.vgg2l = torch.nn.Sequential( torch.nn.Conv2d(1, 64, 3, stride=1, padding=1), torch.nn.ReLU(), torch.nn.Conv2d(64, 64, 3, stride=1, padding=1), torch.nn.ReLU(), torch.nn.MaxPool2d((3, 2)), torch.nn.Conv2d(64, 128, 3, stride=1, padding=1), torch.nn.ReLU(), torch.nn.Conv2d(128, 128, 3, stride=1, padding=1), torch.nn.ReLU(), torch.nn.MaxPool2d((2, 2)), ) self.output = torch.nn.Linear(128 * ((idim // 2) // 2), odim) def forward(self, x, x_mask): """VGG2L forward for x. Args: x (torch.Tensor): input torch (B, T, idim) x_mask (torch.Tensor): (B, 1, T) Returns: x (torch.Tensor): input torch (B, sub(T), attention_dim) x_mask (torch.Tensor): (B, 1, sub(T)) """ x = x.unsqueeze(1) x = self.vgg2l(x) b, c, t, f = x.size() x = self.output(x.transpose(1, 2).contiguous().view(b, t, c * f)) if x_mask is None: return x, None else: x_mask = self.create_new_mask(x_mask, x) return x, x_mask def create_new_mask(self, x_mask, x): """Create a subsampled version of x_mask. Args: x_mask (torch.Tensor): (B, 1, T) x (torch.Tensor): (B, sub(T), attention_dim) Returns: x_mask (torch.Tensor): (B, 1, sub(T)) """ x_t1 = x_mask.size(2) - (x_mask.size(2) % 3) x_mask = x_mask[:, :, :x_t1][:, :, ::3] x_t2 = x_mask.size(2) - (x_mask.size(2) % 2) x_mask = x_mask[:, :, :x_t2][:, :, ::2] return x_mask