from models.synthesizer.hparams import hparams as _syn_hp # Audio settings------------------------------------------------------------------------ # Match the values of the synthesizer sample_rate = _syn_hp.sample_rate n_fft = _syn_hp.n_fft num_mels = _syn_hp.num_mels hop_length = _syn_hp.hop_size win_length = _syn_hp.win_size fmin = _syn_hp.fmin min_level_db = _syn_hp.min_level_db ref_level_db = _syn_hp.ref_level_db mel_max_abs_value = _syn_hp.max_abs_value preemphasis = _syn_hp.preemphasis apply_preemphasis = _syn_hp.preemphasize bits = 9 # bit depth of signal mu_law = True # Recommended to suppress noise if using raw bits in hp.voc_mode # below # WAVERNN / VOCODER -------------------------------------------------------------------------------- voc_mode = 'RAW' # either 'RAW' (softmax on raw bits) or 'MOL' (sample from # mixture of logistics) voc_upsample_factors = (5, 5, 8) # NB - this needs to correctly factorise hop_length voc_rnn_dims = 512 voc_fc_dims = 512 voc_compute_dims = 128 voc_res_out_dims = 128 voc_res_blocks = 10 # Training voc_batch_size = 100 voc_lr = 1e-4 voc_gen_at_checkpoint = 5 # number of samples to generate at each checkpoint voc_pad = 2 # this will pad the input so that the resnet can 'see' wider # than input length voc_seq_len = hop_length * 5 # must be a multiple of hop_length # Generating / Synthesizing voc_gen_batched = True # very fast (realtime+) single utterance batched generation voc_target = 8000 # target number of samples to be generated in each batch entry voc_overlap = 400 # number of samples for crossfading between batches