from pydantic import BaseModel, Field import os from pathlib import Path from enum import Enum from models.encoder import inference as encoder import librosa from scipy.io.wavfile import write import re import numpy as np from control.mkgui.base.components.types import FileContent from models.vocoder.hifigan import inference as gan_vocoder from models.synthesizer.inference import Synthesizer from typing import Any, Tuple import matplotlib.pyplot as plt # Constants AUDIO_SAMPLES_DIR = f"data{os.sep}samples{os.sep}" SYN_MODELS_DIRT = f"data{os.sep}ckpt{os.sep}synthesizer" ENC_MODELS_DIRT = f"data{os.sep}ckpt{os.sep}encoder" VOC_MODELS_DIRT = f"data{os.sep}ckpt{os.sep}vocoder" TEMP_SOURCE_AUDIO = f"wavs{os.sep}temp_source.wav" TEMP_RESULT_AUDIO = f"wavs{os.sep}temp_result.wav" if not os.path.isdir("wavs"): os.makedirs("wavs") # Load local sample audio as options TODO: load dataset if os.path.isdir(AUDIO_SAMPLES_DIR): audio_input_selection = Enum('samples', list((file.name, file) for file in Path(AUDIO_SAMPLES_DIR).glob("*.wav"))) # Pre-Load models if os.path.isdir(SYN_MODELS_DIRT): synthesizers = Enum('synthesizers', list((file.name, file) for file in Path(SYN_MODELS_DIRT).glob("**/*.pt"))) print("Loaded synthesizer models: " + str(len(synthesizers))) else: raise Exception(f"Model folder {SYN_MODELS_DIRT} doesn't exist. 请将模型文件位置移动到上述位置中进行重试!") if os.path.isdir(ENC_MODELS_DIRT): encoders = Enum('encoders', list((file.name, file) for file in Path(ENC_MODELS_DIRT).glob("**/*.pt"))) print("Loaded encoders models: " + str(len(encoders))) else: raise Exception(f"Model folder {ENC_MODELS_DIRT} doesn't exist.") if os.path.isdir(VOC_MODELS_DIRT): vocoders = Enum('vocoders', list((file.name, file) for file in Path(VOC_MODELS_DIRT).glob("**/*gan*.pt"))) print("Loaded vocoders models: " + str(len(synthesizers))) else: raise Exception(f"Model folder {VOC_MODELS_DIRT} doesn't exist.") class Input(BaseModel): message: str = Field( ..., example="欢迎使用工具箱, 现已支持中文输入!", alias="文本内容" ) local_audio_file: audio_input_selection = Field( ..., alias="选择语音(本地wav)", description="选择本地语音文件." ) record_audio_file: FileContent = Field(default=None, alias="录制语音", description="录音.", is_recorder=True, mime_type="audio/wav") upload_audio_file: FileContent = Field(default=None, alias="或上传语音", description="拖拽或点击上传.", mime_type="audio/wav") encoder: encoders = Field( ..., alias="编码模型", description="选择语音编码模型文件." ) synthesizer: synthesizers = Field( ..., alias="合成模型", description="选择语音合成模型文件." ) vocoder: vocoders = Field( ..., alias="语音解码模型", description="选择语音解码模型文件(目前只支持HifiGan类型)." ) class AudioEntity(BaseModel): content: bytes mel: Any class Output(BaseModel): __root__: Tuple[AudioEntity, AudioEntity] def render_output_ui(self, streamlit_app, input) -> None: # type: ignore """Custom output UI. If this method is implmeneted, it will be used instead of the default Output UI renderer. """ src, result = self.__root__ streamlit_app.subheader("Synthesized Audio") streamlit_app.audio(result.content, format="audio/wav") fig, ax = plt.subplots() ax.imshow(src.mel, aspect="equal", interpolation="none") ax.set_title("mel spectrogram(Source Audio)") streamlit_app.pyplot(fig) fig, ax = plt.subplots() ax.imshow(result.mel, aspect="equal", interpolation="none") ax.set_title("mel spectrogram(Result Audio)") streamlit_app.pyplot(fig) def synthesize(input: Input) -> Output: """synthesize(合成)""" # load models encoder.load_model(Path(input.encoder.value)) current_synt = Synthesizer(Path(input.synthesizer.value)) gan_vocoder.load_model(Path(input.vocoder.value)) # load file if input.record_audio_file != None: with open(TEMP_SOURCE_AUDIO, "w+b") as f: f.write(input.record_audio_file.as_bytes()) f.seek(0) wav, sample_rate = librosa.load(TEMP_SOURCE_AUDIO) elif input.upload_audio_file != None: with open(TEMP_SOURCE_AUDIO, "w+b") as f: f.write(input.upload_audio_file.as_bytes()) f.seek(0) wav, sample_rate = librosa.load(TEMP_SOURCE_AUDIO) else: wav, sample_rate = librosa.load(input.local_audio_file.value) write(TEMP_SOURCE_AUDIO, sample_rate, wav) #Make sure we get the correct wav source_spec = Synthesizer.make_spectrogram(wav) # preprocess encoder_wav = encoder.preprocess_wav(wav, sample_rate) embed, _, _ = encoder.embed_utterance(encoder_wav, return_partials=True) # Load input text texts = filter(None, input.message.split("\n")) punctuation = '!,。、,' # punctuate and split/clean text processed_texts = [] for text in texts: for processed_text in re.sub(r'[{}]+'.format(punctuation), '\n', text).split('\n'): if processed_text: processed_texts.append(processed_text.strip()) texts = processed_texts # synthesize and vocode embeds = [embed] * len(texts) specs = current_synt.synthesize_spectrograms(texts, embeds) spec = np.concatenate(specs, axis=1) sample_rate = Synthesizer.sample_rate wav, sample_rate = gan_vocoder.infer_waveform(spec) # write and output write(TEMP_RESULT_AUDIO, sample_rate, wav) #Make sure we get the correct wav with open(TEMP_SOURCE_AUDIO, "rb") as f: source_file = f.read() with open(TEMP_RESULT_AUDIO, "rb") as f: result_file = f.read() return Output(__root__=(AudioEntity(content=source_file, mel=source_spec), AudioEntity(content=result_file, mel=spec)))