from typing import Optional from typing import Tuple from typing import Union import torch from .nets_utils import make_pad_mask class Stft(torch.nn.Module): def __init__( self, n_fft: int = 512, win_length: Union[int, None] = 512, hop_length: int = 128, center: bool = True, pad_mode: str = "reflect", normalized: bool = False, onesided: bool = True, kaldi_padding_mode=False, ): super().__init__() self.n_fft = n_fft if win_length is None: self.win_length = n_fft else: self.win_length = win_length self.hop_length = hop_length self.center = center self.pad_mode = pad_mode self.normalized = normalized self.onesided = onesided self.kaldi_padding_mode = kaldi_padding_mode if self.kaldi_padding_mode: self.win_length = 400 def extra_repr(self): return ( f"n_fft={self.n_fft}, " f"win_length={self.win_length}, " f"hop_length={self.hop_length}, " f"center={self.center}, " f"pad_mode={self.pad_mode}, " f"normalized={self.normalized}, " f"onesided={self.onesided}" ) def forward( self, input: torch.Tensor, ilens: torch.Tensor = None ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: """STFT forward function. Args: input: (Batch, Nsamples) or (Batch, Nsample, Channels) ilens: (Batch) Returns: output: (Batch, Frames, Freq, 2) or (Batch, Frames, Channels, Freq, 2) """ bs = input.size(0) if input.dim() == 3: multi_channel = True # input: (Batch, Nsample, Channels) -> (Batch * Channels, Nsample) input = input.transpose(1, 2).reshape(-1, input.size(1)) else: multi_channel = False # output: (Batch, Freq, Frames, 2=real_imag) # or (Batch, Channel, Freq, Frames, 2=real_imag) if not self.kaldi_padding_mode: output = torch.stft( input, n_fft=self.n_fft, win_length=self.win_length, hop_length=self.hop_length, center=self.center, pad_mode=self.pad_mode, normalized=self.normalized, onesided=self.onesided, return_complex=False ) else: # NOTE(sx): Use Kaldi-fasion padding, maybe wrong num_pads = self.n_fft - self.win_length input = torch.nn.functional.pad(input, (num_pads, 0)) output = torch.stft( input, n_fft=self.n_fft, win_length=self.win_length, hop_length=self.hop_length, center=False, pad_mode=self.pad_mode, normalized=self.normalized, onesided=self.onesided, return_complex=False ) # output: (Batch, Freq, Frames, 2=real_imag) # -> (Batch, Frames, Freq, 2=real_imag) output = output.transpose(1, 2) if multi_channel: # output: (Batch * Channel, Frames, Freq, 2=real_imag) # -> (Batch, Frame, Channel, Freq, 2=real_imag) output = output.view(bs, -1, output.size(1), output.size(2), 2).transpose( 1, 2 ) if ilens is not None: if self.center: pad = self.win_length // 2 ilens = ilens + 2 * pad olens = torch.div(ilens - self.win_length, self.hop_length, rounding_mode='floor') + 1 # olens = ilens - self.win_length // self.hop_length + 1 output.masked_fill_(make_pad_mask(olens, output, 1), 0.0) else: olens = None return output, olens