import os import random import numpy as np import torch import torch.utils.data from utils.audio_utils import spectrogram, load_wav from utils.util import intersperse from models.synthesizer.utils.text import text_to_sequence """Multi speaker version""" class VitsDataset(torch.utils.data.Dataset): """ 1) loads audio, speaker_id, text pairs 2) normalizes text and converts them to sequences of integers 3) computes spectrograms from audio files. """ def __init__(self, audio_file_path, hparams): with open(audio_file_path, encoding='utf-8') as f: self.audio_metadata = [line.strip().split('|') for line in f] self.text_cleaners = hparams.text_cleaners self.max_wav_value = hparams.max_wav_value self.sampling_rate = hparams.sampling_rate self.filter_length = hparams.filter_length self.hop_length = hparams.hop_length self.win_length = hparams.win_length self.sampling_rate = hparams.sampling_rate self.cleaned_text = getattr(hparams, "cleaned_text", False) self.add_blank = hparams.add_blank self.datasets_root = hparams.datasets_root self.min_text_len = getattr(hparams, "min_text_len", 1) self.max_text_len = getattr(hparams, "max_text_len", 190) random.seed(1234) random.shuffle(self.audio_metadata) self._filter() def _filter(self): """ Filter text & store spec lengths """ # Store spectrogram lengths for Bucketing # wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2) # spec_length = wav_length // hop_length audio_metadata_new = [] lengths = [] # for audiopath, sid, text in self.audio_metadata: sid = 0 spk_to_sid = {} for wav_fpath, mel_fpath, embed_path, wav_length, mel_frames, text in self.audio_metadata: if self.min_text_len <= len(text) and len(text) <= self.max_text_len: # TODO: for magic data only speaker_name = wav_fpath.split("_")[1] if speaker_name not in spk_to_sid: sid += 1 spk_to_sid[speaker_name] = sid audio_metadata_new.append([wav_fpath, mel_fpath, embed_path, wav_length, mel_frames, text, spk_to_sid[speaker_name]]) lengths.append(os.path.getsize(f'{self.datasets_root}{os.sep}audio{os.sep}{wav_fpath}') // (2 * self.hop_length)) print("found sid:%d", sid) self.audio_metadata = audio_metadata_new self.lengths = lengths def get_audio_text_speaker_pair(self, audio_metadata): # separate filename, speaker_id and text wav_fpath, text, sid = audio_metadata[0], audio_metadata[5], audio_metadata[6] text = self.get_text(text) spec, wav = self.get_audio(f'{self.datasets_root}{os.sep}audio{os.sep}{wav_fpath}') sid = self.get_sid(sid) emo = torch.FloatTensor(np.load(f'{self.datasets_root}{os.sep}emo{os.sep}{wav_fpath.replace("audio", "emo")}')) return (text, spec, wav, sid, emo) def get_audio(self, filename): # audio, sampling_rate = load_wav(filename) # if sampling_rate != self.sampling_rate: # raise ValueError("{} {} SR doesn't match target {} SR".format( # sampling_rate, self.sampling_rate)) # audio = torch.load(filename) audio = torch.FloatTensor(np.load(filename).astype(np.float32)) audio = audio.unsqueeze(0) # audio_norm = audio / self.max_wav_value # audio_norm = audio_norm.unsqueeze(0) # spec_filename = filename.replace(".wav", ".spec.pt") # if os.path.exists(spec_filename): # spec = torch.load(spec_filename) # else: # spec = spectrogram(audio, self.filter_length, # self.sampling_rate, self.hop_length, self.win_length, # center=False) # spec = torch.squeeze(spec, 0) # torch.save(spec, spec_filename) spec = spectrogram(audio, self.filter_length, self.hop_length, self.win_length, center=False) spec = torch.squeeze(spec, 0) return spec, audio def get_text(self, text): if self.cleaned_text: text_norm = text_to_sequence(text, self.text_cleaners) if self.add_blank: text_norm = intersperse(text_norm, 0) text_norm = torch.LongTensor(text_norm) return text_norm def get_sid(self, sid): sid = torch.LongTensor([int(sid)]) return sid def __getitem__(self, index): return self.get_audio_text_speaker_pair(self.audio_metadata[index]) def __len__(self): return len(self.audio_metadata) class VitsDatasetCollate(): """ Zero-pads model inputs and targets """ def __init__(self, return_ids=False): self.return_ids = return_ids def __call__(self, batch): """Collate's training batch from normalized text, audio and speaker identities PARAMS ------ batch: [text_normalized, spec_normalized, wav_normalized, sid] """ # Right zero-pad all one-hot text sequences to max input length _, ids_sorted_decreasing = torch.sort( torch.LongTensor([x[1].size(1) for x in batch]), dim=0, descending=True) max_text_len = max([len(x[0]) for x in batch]) max_spec_len = max([x[1].size(1) for x in batch]) max_wav_len = max([x[2].size(1) for x in batch]) text_lengths = torch.LongTensor(len(batch)) spec_lengths = torch.LongTensor(len(batch)) wav_lengths = torch.LongTensor(len(batch)) sid = torch.LongTensor(len(batch)) text_padded = torch.LongTensor(len(batch), max_text_len) spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len) wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len) emo = torch.FloatTensor(len(batch), 1024) text_padded.zero_() spec_padded.zero_() wav_padded.zero_() emo.zero_() for i in range(len(ids_sorted_decreasing)): row = batch[ids_sorted_decreasing[i]] text = row[0] text_padded[i, :text.size(0)] = text text_lengths[i] = text.size(0) spec = row[1] spec_padded[i, :, :spec.size(1)] = spec spec_lengths[i] = spec.size(1) wav = row[2] wav_padded[i, :, :wav.size(1)] = wav wav_lengths[i] = wav.size(1) sid[i] = row[3] emo[i, :] = row[4] if self.return_ids: return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, ids_sorted_decreasing return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, emo class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler): """ Maintain similar input lengths in a batch. Length groups are specified by boundaries. Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}. It removes samples which are not included in the boundaries. Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded. """ def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True): super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) self.lengths = dataset.lengths self.batch_size = batch_size self.boundaries = boundaries self.buckets, self.num_samples_per_bucket = self._create_buckets() self.total_size = sum(self.num_samples_per_bucket) self.num_samples = self.total_size // self.num_replicas def _create_buckets(self): buckets = [[] for _ in range(len(self.boundaries) - 1)] for i in range(len(self.lengths)): length = self.lengths[i] idx_bucket = self._bisect(length) if idx_bucket != -1: buckets[idx_bucket].append(i) for i in range(len(buckets) - 1, 0, -1): if len(buckets[i]) == 0: buckets.pop(i) self.boundaries.pop(i+1) num_samples_per_bucket = [] for i in range(len(buckets)): len_bucket = len(buckets[i]) total_batch_size = self.num_replicas * self.batch_size rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size num_samples_per_bucket.append(len_bucket + rem) return buckets, num_samples_per_bucket def __iter__(self): # deterministically shuffle based on epoch g = torch.Generator() g.manual_seed(self.epoch) indices = [] if self.shuffle: for bucket in self.buckets: indices.append(torch.randperm(len(bucket), generator=g).tolist()) else: for bucket in self.buckets: indices.append(list(range(len(bucket)))) batches = [] for i in range(len(self.buckets)): bucket = self.buckets[i] len_bucket = len(bucket) ids_bucket = indices[i] num_samples_bucket = self.num_samples_per_bucket[i] # add extra samples to make it evenly divisible rem = num_samples_bucket - len_bucket ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)] # subsample ids_bucket = ids_bucket[self.rank::self.num_replicas] # batching for j in range(len(ids_bucket) // self.batch_size): batch = [bucket[idx] for idx in ids_bucket[j*self.batch_size:(j+1)*self.batch_size]] batches.append(batch) if self.shuffle: batch_ids = torch.randperm(len(batches), generator=g).tolist() batches = [batches[i] for i in batch_ids] self.batches = batches assert len(self.batches) * self.batch_size == self.num_samples return iter(self.batches) def _bisect(self, x, lo=0, hi=None): if hi is None: hi = len(self.boundaries) - 1 if hi > lo: mid = (hi + lo) // 2 if self.boundaries[mid] < x and x <= self.boundaries[mid+1]: return mid elif x <= self.boundaries[mid]: return self._bisect(x, lo, mid) else: return self._bisect(x, mid + 1, hi) else: return -1 def __len__(self): return self.num_samples // self.batch_size