from asyncio.windows_events import NULL from pydantic import BaseModel, Field import os from pathlib import Path from enum import Enum from encoder import inference as encoder import librosa from scipy.io.wavfile import write import re import numpy as np from opyrator.components.types import FileContent from vocoder.hifigan import inference as gan_vocoder from synthesizer.inference import Synthesizer # Constants AUDIO_SAMPLES_DIR = 'samples\\' SYN_MODELS_DIRT = "synthesizer\\saved_models" ENC_MODELS_DIRT = "encoder\\saved_models" VOC_MODELS_DIRT = "vocoder\\saved_models" TEMP_SOURCE_AUDIO = "wavs/temp_source.wav" TEMP_RESULT_AUDIO = "wavs/temp_result.wav" # Load local sample audio as options TODO: load dataset if os.path.isdir(AUDIO_SAMPLES_DIR): audio_input_selection = Enum('samples', list((file.name, file) for file in Path(AUDIO_SAMPLES_DIR).glob("*.wav"))) # Pre-Load models if os.path.isdir(SYN_MODELS_DIRT): synthesizers = Enum('synthesizers', list((file.name, file) for file in Path(SYN_MODELS_DIRT).glob("**/*.pt"))) print("Loaded synthesizer models: " + str(len(synthesizers))) if os.path.isdir(ENC_MODELS_DIRT): encoders = Enum('encoders', list((file.name, file) for file in Path(ENC_MODELS_DIRT).glob("**/*.pt"))) print("Loaded encoders models: " + str(len(encoders))) if os.path.isdir(VOC_MODELS_DIRT): vocoders = Enum('vocoders', list((file.name, file) for file in Path(VOC_MODELS_DIRT).glob("**/*gan*.pt"))) print("Loaded vocoders models: " + str(len(synthesizers))) class Input(BaseModel): local_audio_file: audio_input_selection = Field( ..., alias="输入语音(本地wav)", description="选择本地语音文件." ) upload_audio_file: FileContent = Field(..., alias="或上传语音", description="拖拽或点击上传.", mime_type="audio/wav") encoder: encoders = Field( ..., alias="编码模型", description="选择语音编码模型文件." ) synthesizer: synthesizers = Field( ..., alias="合成模型", description="选择语音编码模型文件." ) vocoder: vocoders = Field( ..., alias="语音编码模型", description="选择语音编码模型文件(目前只支持HifiGan类型)." ) message: str = Field( ..., example="欢迎使用工具箱, 现已支持中文输入!", alias="输出文本内容" ) class Output(BaseModel): result_file: FileContent = Field( ..., mime_type="audio/wav", description="输出音频", ) source_file: FileContent = Field( ..., mime_type="audio/wav", description="原始音频.", ) def mocking_bird(input: Input) -> Output: """欢迎使用MockingBird Web 2""" # load models encoder.load_model(Path(input.encoder.value)) current_synt = Synthesizer(Path(input.synthesizer.value)) gan_vocoder.load_model(Path(input.vocoder.value)) # load file if input.upload_audio_file != NULL: with open(TEMP_SOURCE_AUDIO, "w+b") as f: f.write(input.upload_audio_file.as_bytes()) f.seek(0) wav, sample_rate = librosa.load(TEMP_SOURCE_AUDIO) else: wav, sample_rate = librosa.load(input.local_audio_file.value) write(TEMP_SOURCE_AUDIO, sample_rate, wav) #Make sure we get the correct wav # preprocess encoder_wav = encoder.preprocess_wav(wav, sample_rate) embed, _, _ = encoder.embed_utterance(encoder_wav, return_partials=True) # Load input text texts = filter(None, input.message.split("\n")) punctuation = '!,。、,' # punctuate and split/clean text processed_texts = [] for text in texts: for processed_text in re.sub(r'[{}]+'.format(punctuation), '\n', text).split('\n'): if processed_text: processed_texts.append(processed_text.strip()) texts = processed_texts # synthesize and vocode embeds = [embed] * len(texts) specs = current_synt.synthesize_spectrograms(texts, embeds) spec = np.concatenate(specs, axis=1) sample_rate = Synthesizer.sample_rate wav, sample_rate = gan_vocoder.infer_waveform(spec) # write and output write(TEMP_RESULT_AUDIO, sample_rate, wav) #Make sure we get the correct wav with open(TEMP_SOURCE_AUDIO, "rb") as f: source_file = f.read() with open(TEMP_RESULT_AUDIO, "rb") as f: result_file = f.read() return Output(source_file=source_file, result_file=result_file)