#!/usr/bin/env python3 # Copyright 2017 Johns Hopkins University (Shinji Watanabe) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """Common functions for ASR.""" import argparse import editdistance import json import logging import numpy as np import six import sys from itertools import groupby def end_detect(ended_hyps, i, M=3, D_end=np.log(1 * np.exp(-10))): """End detection. desribed in Eq. (50) of S. Watanabe et al "Hybrid CTC/Attention Architecture for End-to-End Speech Recognition" :param ended_hyps: :param i: :param M: :param D_end: :return: """ if len(ended_hyps) == 0: return False count = 0 best_hyp = sorted(ended_hyps, key=lambda x: x['score'], reverse=True)[0] for m in six.moves.range(M): # get ended_hyps with their length is i - m hyp_length = i - m hyps_same_length = [x for x in ended_hyps if len(x['yseq']) == hyp_length] if len(hyps_same_length) > 0: best_hyp_same_length = sorted(hyps_same_length, key=lambda x: x['score'], reverse=True)[0] if best_hyp_same_length['score'] - best_hyp['score'] < D_end: count += 1 if count == M: return True else: return False # TODO(takaaki-hori): add different smoothing methods def label_smoothing_dist(odim, lsm_type, transcript=None, blank=0): """Obtain label distribution for loss smoothing. :param odim: :param lsm_type: :param blank: :param transcript: :return: """ if transcript is not None: with open(transcript, 'rb') as f: trans_json = json.load(f)['utts'] if lsm_type == 'unigram': assert transcript is not None, 'transcript is required for %s label smoothing' % lsm_type labelcount = np.zeros(odim) for k, v in trans_json.items(): ids = np.array([int(n) for n in v['output'][0]['tokenid'].split()]) # to avoid an error when there is no text in an uttrance if len(ids) > 0: labelcount[ids] += 1 labelcount[odim - 1] = len(transcript) # count labelcount[labelcount == 0] = 1 # flooring labelcount[blank] = 0 # remove counts for blank labeldist = labelcount.astype(np.float32) / np.sum(labelcount) else: logging.error( "Error: unexpected label smoothing type: %s" % lsm_type) sys.exit() return labeldist def get_vgg2l_odim(idim, in_channel=3, out_channel=128, downsample=True): """Return the output size of the VGG frontend. :param in_channel: input channel size :param out_channel: output channel size :return: output size :rtype int """ idim = idim / in_channel if downsample: idim = np.ceil(np.array(idim, dtype=np.float32) / 2) # 1st max pooling idim = np.ceil(np.array(idim, dtype=np.float32) / 2) # 2nd max pooling return int(idim) * out_channel # numer of channels class ErrorCalculator(object): """Calculate CER and WER for E2E_ASR and CTC models during training. :param y_hats: numpy array with predicted text :param y_pads: numpy array with true (target) text :param char_list: :param sym_space: :param sym_blank: :return: """ def __init__(self, char_list, sym_space, sym_blank, report_cer=False, report_wer=False, trans_type="char"): """Construct an ErrorCalculator object.""" super(ErrorCalculator, self).__init__() self.report_cer = report_cer self.report_wer = report_wer self.trans_type = trans_type self.char_list = char_list self.space = sym_space self.blank = sym_blank self.idx_blank = self.char_list.index(self.blank) if self.space in self.char_list: self.idx_space = self.char_list.index(self.space) else: self.idx_space = None def __call__(self, ys_hat, ys_pad, is_ctc=False): """Calculate sentence-level WER/CER score. :param torch.Tensor ys_hat: prediction (batch, seqlen) :param torch.Tensor ys_pad: reference (batch, seqlen) :param bool is_ctc: calculate CER score for CTC :return: sentence-level WER score :rtype float :return: sentence-level CER score :rtype float """ cer, wer = None, None if is_ctc: return self.calculate_cer_ctc(ys_hat, ys_pad) elif not self.report_cer and not self.report_wer: return cer, wer seqs_hat, seqs_true = self.convert_to_char(ys_hat, ys_pad) if self.report_cer: cer = self.calculate_cer(seqs_hat, seqs_true) if self.report_wer: wer = self.calculate_wer(seqs_hat, seqs_true) return cer, wer def calculate_cer_ctc(self, ys_hat, ys_pad): """Calculate sentence-level CER score for CTC. :param torch.Tensor ys_hat: prediction (batch, seqlen) :param torch.Tensor ys_pad: reference (batch, seqlen) :return: average sentence-level CER score :rtype float """ cers, char_ref_lens = [], [] for i, y in enumerate(ys_hat): y_hat = [x[0] for x in groupby(y)] y_true = ys_pad[i] seq_hat, seq_true = [], [] for idx in y_hat: idx = int(idx) if idx != -1 and idx != self.idx_blank and idx != self.idx_space: seq_hat.append(self.char_list[int(idx)]) for idx in y_true: idx = int(idx) if idx != -1 and idx != self.idx_blank and idx != self.idx_space: seq_true.append(self.char_list[int(idx)]) if self.trans_type == "char": hyp_chars = "".join(seq_hat) ref_chars = "".join(seq_true) else: hyp_chars = " ".join(seq_hat) ref_chars = " ".join(seq_true) if len(ref_chars) > 0: cers.append(editdistance.eval(hyp_chars, ref_chars)) char_ref_lens.append(len(ref_chars)) cer_ctc = float(sum(cers)) / sum(char_ref_lens) if cers else None return cer_ctc def convert_to_char(self, ys_hat, ys_pad): """Convert index to character. :param torch.Tensor seqs_hat: prediction (batch, seqlen) :param torch.Tensor seqs_true: reference (batch, seqlen) :return: token list of prediction :rtype list :return: token list of reference :rtype list """ seqs_hat, seqs_true = [], [] for i, y_hat in enumerate(ys_hat): y_true = ys_pad[i] eos_true = np.where(y_true == -1)[0] eos_true = eos_true[0] if len(eos_true) > 0 else len(y_true) # To avoid wrong higher WER than the one obtained from the decoding # eos from y_true is used to mark the eos in y_hat # because of that y_hats has not padded outs with -1. seq_hat = [self.char_list[int(idx)] for idx in y_hat[:eos_true]] seq_true = [self.char_list[int(idx)] for idx in y_true if int(idx) != -1] # seq_hat_text = "".join(seq_hat).replace(self.space, ' ') seq_hat_text = " ".join(seq_hat).replace(self.space, ' ') seq_hat_text = seq_hat_text.replace(self.blank, '') # seq_true_text = "".join(seq_true).replace(self.space, ' ') seq_true_text = " ".join(seq_true).replace(self.space, ' ') seqs_hat.append(seq_hat_text) seqs_true.append(seq_true_text) return seqs_hat, seqs_true def calculate_cer(self, seqs_hat, seqs_true): """Calculate sentence-level CER score. :param list seqs_hat: prediction :param list seqs_true: reference :return: average sentence-level CER score :rtype float """ char_eds, char_ref_lens = [], [] for i, seq_hat_text in enumerate(seqs_hat): seq_true_text = seqs_true[i] hyp_chars = seq_hat_text.replace(' ', '') ref_chars = seq_true_text.replace(' ', '') char_eds.append(editdistance.eval(hyp_chars, ref_chars)) char_ref_lens.append(len(ref_chars)) return float(sum(char_eds)) / sum(char_ref_lens) def calculate_wer(self, seqs_hat, seqs_true): """Calculate sentence-level WER score. :param list seqs_hat: prediction :param list seqs_true: reference :return: average sentence-level WER score :rtype float """ word_eds, word_ref_lens = [], [] for i, seq_hat_text in enumerate(seqs_hat): seq_true_text = seqs_true[i] hyp_words = seq_hat_text.split() ref_words = seq_true_text.split() word_eds.append(editdistance.eval(hyp_words, ref_words)) word_ref_lens.append(len(ref_words)) return float(sum(word_eds)) / sum(word_ref_lens) class ErrorCalculatorTrans(object): """Calculate CER and WER for transducer models. Args: decoder (nn.Module): decoder module args (Namespace): argument Namespace containing options report_cer (boolean): compute CER option report_wer (boolean): compute WER option """ def __init__(self, decoder, args, report_cer=False, report_wer=False): """Construct an ErrorCalculator object for transducer model.""" super(ErrorCalculatorTrans, self).__init__() self.dec = decoder recog_args = {'beam_size': args.beam_size, 'nbest': args.nbest, 'space': args.sym_space, 'score_norm_transducer': args.score_norm_transducer} self.recog_args = argparse.Namespace(**recog_args) self.char_list = args.char_list self.space = args.sym_space self.blank = args.sym_blank self.report_cer = args.report_cer self.report_wer = args.report_wer def __call__(self, hs_pad, ys_pad): """Calculate sentence-level WER/CER score for transducer models. Args: hs_pad (torch.Tensor): batch of padded input sequence (batch, T, D) ys_pad (torch.Tensor): reference (batch, seqlen) Returns: (float): sentence-level CER score (float): sentence-level WER score """ cer, wer = None, None if not self.report_cer and not self.report_wer: return cer, wer batchsize = int(hs_pad.size(0)) batch_nbest = [] for b in six.moves.range(batchsize): if self.recog_args.beam_size == 1: nbest_hyps = self.dec.recognize(hs_pad[b], self.recog_args) else: nbest_hyps = self.dec.recognize_beam(hs_pad[b], self.recog_args) batch_nbest.append(nbest_hyps) ys_hat = [nbest_hyp[0]['yseq'][1:] for nbest_hyp in batch_nbest] seqs_hat, seqs_true = self.convert_to_char(ys_hat, ys_pad.cpu()) if self.report_cer: cer = self.calculate_cer(seqs_hat, seqs_true) if self.report_wer: wer = self.calculate_wer(seqs_hat, seqs_true) return cer, wer def convert_to_char(self, ys_hat, ys_pad): """Convert index to character. Args: ys_hat (torch.Tensor): prediction (batch, seqlen) ys_pad (torch.Tensor): reference (batch, seqlen) Returns: (list): token list of prediction (list): token list of reference """ seqs_hat, seqs_true = [], [] for i, y_hat in enumerate(ys_hat): y_true = ys_pad[i] eos_true = np.where(y_true == -1)[0] eos_true = eos_true[0] if len(eos_true) > 0 else len(y_true) seq_hat = [self.char_list[int(idx)] for idx in y_hat[:eos_true]] seq_true = [self.char_list[int(idx)] for idx in y_true if int(idx) != -1] seq_hat_text = "".join(seq_hat).replace(self.space, ' ') seq_hat_text = seq_hat_text.replace(self.blank, '') seq_true_text = "".join(seq_true).replace(self.space, ' ') seqs_hat.append(seq_hat_text) seqs_true.append(seq_true_text) return seqs_hat, seqs_true def calculate_cer(self, seqs_hat, seqs_true): """Calculate sentence-level CER score for transducer model. Args: seqs_hat (torch.Tensor): prediction (batch, seqlen) seqs_true (torch.Tensor): reference (batch, seqlen) Returns: (float): average sentence-level CER score """ char_eds, char_ref_lens = [], [] for i, seq_hat_text in enumerate(seqs_hat): seq_true_text = seqs_true[i] hyp_chars = seq_hat_text.replace(' ', '') ref_chars = seq_true_text.replace(' ', '') char_eds.append(editdistance.eval(hyp_chars, ref_chars)) char_ref_lens.append(len(ref_chars)) return float(sum(char_eds)) / sum(char_ref_lens) def calculate_wer(self, seqs_hat, seqs_true): """Calculate sentence-level WER score for transducer model. Args: seqs_hat (torch.Tensor): prediction (batch, seqlen) seqs_true (torch.Tensor): reference (batch, seqlen) Returns: (float): average sentence-level WER score """ word_eds, word_ref_lens = [], [] for i, seq_hat_text in enumerate(seqs_hat): seq_true_text = seqs_true[i] hyp_words = seq_hat_text.split() ref_words = seq_true_text.split() word_eds.append(editdistance.eval(hyp_words, ref_words)) word_ref_lens.append(len(ref_words)) return float(sum(word_eds)) / sum(word_ref_lens)