from models.synthesizer.hparams import hparams from models.synthesizer.train import train from utils.argutils import print_args import argparse if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("run_id", type=str, help= \ "Name for this model instance. If a model state from the same run ID was previously " "saved, the training will restart from there. Pass -f to overwrite saved states and " "restart from scratch.") parser.add_argument("syn_dir", type=str, default=argparse.SUPPRESS, help= \ "Path to the synthesizer directory that contains the ground truth mel spectrograms, " "the wavs and the embeds.") parser.add_argument("-m", "--models_dir", type=str, default="synthesizer/saved_models/", help=\ "Path to the output directory that will contain the saved model weights and the logs.") parser.add_argument("-s", "--save_every", type=int, default=1000, help= \ "Number of steps between updates of the model on the disk. Set to 0 to never save the " "model.") parser.add_argument("-b", "--backup_every", type=int, default=25000, help= \ "Number of steps between backups of the model. Set to 0 to never make backups of the " "model.") parser.add_argument("-l", "--log_every", type=int, default=200, help= \ "Number of steps between summary the training info in tensorboard") parser.add_argument("-f", "--force_restart", action="store_true", help= \ "Do not load any saved model and restart from scratch.") parser.add_argument("--hparams", default="", help="Hyperparameter overrides as a comma-separated list of name=value " "pairs") args = parser.parse_args() print_args(args, parser) args.hparams = hparams.parse(args.hparams) # Run the training train(**vars(args))