import matplotlib from torch.nn import functional as F import torch matplotlib.use('Agg') import time class Timer(): ''' Timer for recording training time distribution. ''' def __init__(self): self.prev_t = time.time() self.clear() def set(self): self.prev_t = time.time() def cnt(self, mode): self.time_table[mode] += time.time()-self.prev_t self.set() if mode == 'bw': self.click += 1 def show(self): total_time = sum(self.time_table.values()) self.time_table['avg'] = total_time/self.click self.time_table['rd'] = 100*self.time_table['rd']/total_time self.time_table['fw'] = 100*self.time_table['fw']/total_time self.time_table['bw'] = 100*self.time_table['bw']/total_time msg = '{avg:.3f} sec/step (rd {rd:.1f}% | fw {fw:.1f}% | bw {bw:.1f}%)'.format( **self.time_table) self.clear() return msg def clear(self): self.time_table = {'rd': 0, 'fw': 0, 'bw': 0} self.click = 0 # Reference : https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/e2e_asr.py#L168 def human_format(num): magnitude = 0 while num >= 1000: magnitude += 1 num /= 1000.0 # add more suffixes if you need them return '{:3.1f}{}'.format(num, [' ', 'K', 'M', 'G', 'T', 'P'][magnitude]) # provide easy access of attribute from dict, such abc.key class AttrDict(dict): def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self def init_weights(m, mean=0.0, std=0.01): classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(mean, std) def get_padding(kernel_size, dilation=1): return int((kernel_size*dilation - dilation)/2) def sequence_mask(length, max_length=None): if max_length is None: max_length = length.max() x = torch.arange(max_length, dtype=length.dtype, device=length.device) return x.unsqueeze(0) < length.unsqueeze(1) def slice_segments(x, ids_str, segment_size=4): ret = torch.zeros_like(x[:, :, :segment_size]) for i in range(x.size(0)): idx_str = ids_str[i] idx_end = idx_str + segment_size ret[i] = x[i, :, idx_str:idx_end] return ret def rand_slice_segments(x, x_lengths=None, segment_size=4): b, d, t = x.size() if x_lengths is None: x_lengths = t ids_str_max = x_lengths - segment_size + 1 ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long) ret = slice_segments(x, ids_str, segment_size) return ret, ids_str def convert_pad_shape(pad_shape): l = pad_shape[::-1] pad_shape = [item for sublist in l for item in sublist] return pad_shape def generate_path(duration, mask): """ duration: [b, 1, t_x] mask: [b, 1, t_y, t_x] """ device = duration.device b, _, t_y, t_x = mask.shape cum_duration = torch.cumsum(duration, -1) cum_duration_flat = cum_duration.view(b * t_x) path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype) path = path.view(b, t_x, t_y) path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1] path = path.unsqueeze(1).transpose(2,3) * mask return path @torch.jit.script def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): n_channels_int = n_channels[0] in_act = input_a + input_b t_act = torch.tanh(in_act[:, :n_channels_int, :]) s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) acts = t_act * s_act return acts def subsequent_mask(length): mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0) return mask def intersperse(lst, item): result = [item] * (len(lst) * 2 + 1) result[1::2] = lst return result def clip_grad_value_(parameters, clip_value, norm_type=2): if isinstance(parameters, torch.Tensor): parameters = [parameters] parameters = list(filter(lambda p: p.grad is not None, parameters)) norm_type = float(norm_type) if clip_value is not None: clip_value = float(clip_value) total_norm = 0 for p in parameters: param_norm = p.grad.data.norm(norm_type) total_norm += param_norm.item() ** norm_type if clip_value is not None: p.grad.data.clamp_(min=-clip_value, max=clip_value) total_norm = total_norm ** (1. / norm_type) return total_norm