import glob import os import matplotlib import torch from torch.nn.utils import weight_norm matplotlib.use("Agg") import matplotlib.pylab as plt import shutil def build_env(config, config_name, path): t_path = os.path.join(path, config_name) if config != t_path: os.makedirs(path, exist_ok=True) shutil.copyfile(config, os.path.join(path, config_name)) def plot_spectrogram(spectrogram): fig, ax = plt.subplots(figsize=(10, 2)) im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation='none') plt.colorbar(im, ax=ax) fig.canvas.draw() plt.close() return fig def init_weights(m, mean=0.0, std=0.01): classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(mean, std) def apply_weight_norm(m): classname = m.__class__.__name__ if classname.find("Conv") != -1: weight_norm(m) def get_padding(kernel_size, dilation=1): return int((kernel_size*dilation - dilation)/2) def load_checkpoint(filepath, device): assert os.path.isfile(filepath) print("Loading '{}'".format(filepath)) checkpoint_dict = torch.load(filepath, map_location=device) print("Complete.") return checkpoint_dict def save_checkpoint(filepath, obj): print("Saving checkpoint to {}".format(filepath)) torch.save(obj, filepath) print("Complete.") def scan_checkpoint(cp_dir, prefix): pattern = os.path.join(cp_dir, prefix + '????????.pt') cp_list = glob.glob(pattern) if len(cp_list) == 0: return None return sorted(cp_list)[-1]