## 实时语音克隆 - 中文/普通话 ![mockingbird](https://user-images.githubusercontent.com/12797292/131216767-6eb251d6-14fc-4951-8324-2722f0cd4c63.jpg) [![MIT License](https://img.shields.io/badge/license-MIT-blue.svg?style=flat)](http://choosealicense.com/licenses/mit/) ### [English](README.md) | 中文 ### [DEMO VIDEO](https://www.bilibili.com/video/BV1sA411P7wM/) ## 特性 🌍 **中文** 支持普通话并使用多种中文数据集进行测试:aidatatang_200zh, magicdata, aishell3, biaobei,MozillaCommonVoice 等 🤩 **PyTorch** 适用于 pytorch,已在 1.9.0 版本(最新于 2021 年 8 月)中测试,GPU Tesla T4 和 GTX 2060 🌍 **Windows + Linux** 可在 Windows 操作系统和 linux 操作系统中运行(苹果系统M1版也有社区成功运行案例) 🤩 **Easy & Awesome** 仅需下载或新训练合成器(synthesizer)就有良好效果,复用预训练的编码器/声码器,或实时的HiFi-GAN作为vocoder ## 快速开始 > 0训练新手友好版可以参考 [Quick Start (Newbie)](https://github.com/babysor/Realtime-Voice-Clone-Chinese/wiki/Quick-Start-(Newbie)) ### 1. 安装要求 > 按照原始存储库测试您是否已准备好所有环境。 **Python 3.7 或更高版本** 需要运行工具箱。 * 安装 [PyTorch](https://pytorch.org/get-started/locally/)。 > 如果在用 pip 方式安装的时候出现 `ERROR: Could not find a version that satisfies the requirement torch==1.9.0+cu102 (from versions: 0.1.2, 0.1.2.post1, 0.1.2.post2)` 这个错误可能是 python 版本过低,3.9 可以安装成功 * 安装 [ffmpeg](https://ffmpeg.org/download.html#get-packages)。 * 运行`pip install -r requirements.txt` 来安装剩余的必要包。 * 安装 webrtcvad 用 `pip install webrtcvad-wheels`。 ### 2. 使用数据集训练合成器 * 下载 数据集并解压:确保您可以访问 *train* 文件夹中的所有音频文件(如.wav) * 进行音频和梅尔频谱图预处理: `python pre.py ` 可以传入参数 --dataset `{dataset}` 支持 aidatatang_200zh, magicdata, aishell3 > 假如你下载的 `aidatatang_200zh`文件放在D盘,`train`文件路径为 `D:\data\aidatatang_200zh\corpus\train` , 你的`datasets_root`就是 `D:\data\` >假如發生 `頁面文件太小,無法完成操作`,請參考這篇[文章](https://blog.csdn.net/qq_17755303/article/details/112564030),將虛擬內存更改為100G(102400),例如:档案放置D槽就更改D槽的虚拟内存 * 训练合成器: `python synthesizer_train.py mandarin /SV2TTS/synthesizer` * 当您在训练文件夹 *synthesizer/saved_models/* 中看到注意线显示和损失满足您的需要时,请转到下一步。 > 仅供参考,我的注意力是在 18k 步之后出现的,并且在 50k 步之后损失变得低于 0.4 ![attention_step_20500_sample_1](https://user-images.githubusercontent.com/7423248/128587252-f669f05a-f411-4811-8784-222156ea5e9d.png) ![step-135500-mel-spectrogram_sample_1](https://user-images.githubusercontent.com/7423248/128587255-4945faa0-5517-46ea-b173-928eff999330.png) ### 2.2 使用预先训练好的合成器 > 实在没有设备或者不想慢慢调试,可以使用网友贡献的模型(欢迎持续分享): | 作者 | 下载链接 | 效果预览 | 信息 | | --- | ----------- | ----- | ----- | |@FawenYo | https://drive.google.com/file/d/1H-YGOUHpmqKxJ9FRc6vAjPuqQki24UbC/view?usp=sharing [百度盘链接](https://pan.baidu.com/s/1vSYXO4wsLyjnF3Unl-Xoxg) 提取码:1024 | [input](https://github.com/babysor/MockingBird/wiki/audio/self_test.mp3) [output](https://github.com/babysor/MockingBird/wiki/audio/export.wav) | 200k steps 台湾口音 |@miven| https://pan.baidu.com/s/1PI-hM3sn5wbeChRryX-RCQ 提取码:2021 | https://www.bilibili.com/video/BV1uh411B7AD/ | 150k steps 旧版需根据[issue](https://github.com/babysor/MockingBird/issues/37)修复 ### 2.3 训练声码器 (Optional) * 预处理数据: `python vocoder_preprocess.py ` * 训练声码器: `python vocoder_train.py mandarin ` ### 3. 启动工具箱 然后您可以尝试使用工具箱: `python demo_toolbox.py -d ` > Good news🤩: 可直接使用中文 ## Release Note 2021.9.8 新增Hifi-GAN Vocoder支持 ## 引用及论文 > 该库一开始从仅支持英语的[Real-Time-Voice-Cloning](https://github.com/CorentinJ/Real-Time-Voice-Cloning) 分叉出来的,鸣谢作者。 | URL | Designation | 标题 | 实现源码 | | --- | ----------- | ----- | --------------------- | | [2010.05646](https://arxiv.org/abs/2010.05646) | HiFi-GAN (vocoder)| Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis | 本代码库 | |[**1806.04558**](https://arxiv.org/pdf/1806.04558.pdf) | **SV2TTS** | **Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis** | This repo | |[1802.08435](https://arxiv.org/pdf/1802.08435.pdf) | WaveRNN (vocoder) | Efficient Neural Audio Synthesis | [fatchord/WaveRNN](https://github.com/fatchord/WaveRNN) | |[1703.10135](https://arxiv.org/pdf/1703.10135.pdf) | Tacotron (synthesizer) | Tacotron: Towards End-to-End Speech Synthesis | [fatchord/WaveRNN](https://github.com/fatchord/WaveRNN) |[1710.10467](https://arxiv.org/pdf/1710.10467.pdf) | GE2E (encoder)| Generalized End-To-End Loss for Speaker Verification | 本代码库 | ## 常見問題(FQ&A) #### 1.數據集哪裡下載? [aidatatang_200zh](http://www.openslr.org/62/)、[magicdata](http://www.openslr.org/68/)、[aishell3](http://www.openslr.org/93/) > 解壓 aidatatang_200zh 後,還需將 `aidatatang_200zh\corpus\train`下的檔案全選解壓縮 #### 2.``是什麼意思? 假如數據集路徑為 `D:\data\aidatatang_200zh`,那麼 ``就是 `D:\data` #### 3.訓練模型顯存不足 訓練合成器時:將 `synthesizer/hparams.py`中的batch_size參數調小 ``` //調整前 tts_schedule = [(2, 1e-3, 20_000, 12), # Progressive training schedule (2, 5e-4, 40_000, 12), # (r, lr, step, batch_size) (2, 2e-4, 80_000, 12), # (2, 1e-4, 160_000, 12), # r = reduction factor (# of mel frames (2, 3e-5, 320_000, 12), # synthesized for each decoder iteration) (2, 1e-5, 640_000, 12)], # lr = learning rate //調整後 tts_schedule = [(2, 1e-3, 20_000, 8), # Progressive training schedule (2, 5e-4, 40_000, 8), # (r, lr, step, batch_size) (2, 2e-4, 80_000, 8), # (2, 1e-4, 160_000, 8), # r = reduction factor (# of mel frames (2, 3e-5, 320_000, 8), # synthesized for each decoder iteration) (2, 1e-5, 640_000, 8)], # lr = learning rate ``` 聲碼器-預處理數據集時:將 `synthesizer/hparams.py`中的batch_size參數調小 ``` //調整前 ### Data Preprocessing max_mel_frames = 900, rescale = True, rescaling_max = 0.9, synthesis_batch_size = 16, # For vocoder preprocessing and inference. //調整後 ### Data Preprocessing max_mel_frames = 900, rescale = True, rescaling_max = 0.9, synthesis_batch_size = 8, # For vocoder preprocessing and inference. ``` 聲碼器-訓練聲碼器時:將 `vocoder/wavernn/hparams.py`中的batch_size參數調小 ``` //調整前 # Training voc_batch_size = 100 voc_lr = 1e-4 voc_gen_at_checkpoint = 5 voc_pad = 2 //調整後 # Training voc_batch_size = 6 voc_lr = 1e-4 voc_gen_at_checkpoint = 5 voc_pad =2 ``` #### 4.碰到`RuntimeError: Error(s) in loading state_dict for Tacotron: size mismatch for encoder.embedding.weight: copying a param with shape torch.Size([70, 512]) from checkpoint, the shape in current model is torch.Size([75, 512]).` 請參照 issue [#37](https://github.com/babysor/MockingBird/issues/37) #### 5.如何改善CPU、GPU佔用率? 適情況調整batch_size參數來改善