Translate update README-CN.md (#698)

Fix: Traditional Chinese to Simplified Chinese
This commit is contained in:
Xu Meng 2022-08-06 23:51:34 +08:00 committed by GitHub
parent ab7d692619
commit f57d1a69b6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -148,30 +148,30 @@
|[1703.10135](https://arxiv.org/pdf/1703.10135.pdf) | Tacotron (synthesizer) | Tacotron: Towards End-to-End Speech Synthesis | [fatchord/WaveRNN](https://github.com/fatchord/WaveRNN) |[1703.10135](https://arxiv.org/pdf/1703.10135.pdf) | Tacotron (synthesizer) | Tacotron: Towards End-to-End Speech Synthesis | [fatchord/WaveRNN](https://github.com/fatchord/WaveRNN)
|[1710.10467](https://arxiv.org/pdf/1710.10467.pdf) | GE2E (encoder)| Generalized End-To-End Loss for Speaker Verification | 本代码库 | |[1710.10467](https://arxiv.org/pdf/1710.10467.pdf) | GE2E (encoder)| Generalized End-To-End Loss for Speaker Verification | 本代码库 |
## 常見問題(FQ&A) ## 常见问题(FQ&A)
#### 1.數據集哪裡下載? #### 1.数据集在哪里下载?
| 数据集 | OpenSLR地址 | 其他源 (Google Drive, Baidu网盘等) | | 数据集 | OpenSLR地址 | 其他源 (Google Drive, Baidu网盘等) |
| --- | ----------- | ---------------| | --- | ----------- | ---------------|
| aidatatang_200zh | [OpenSLR](http://www.openslr.org/62/) | [Google Drive](https://drive.google.com/file/d/110A11KZoVe7vy6kXlLb6zVPLb_J91I_t/view?usp=sharing) | | aidatatang_200zh | [OpenSLR](http://www.openslr.org/62/) | [Google Drive](https://drive.google.com/file/d/110A11KZoVe7vy6kXlLb6zVPLb_J91I_t/view?usp=sharing) |
| magicdata | [OpenSLR](http://www.openslr.org/68/) | [Google Drive (Dev set)](https://drive.google.com/file/d/1g5bWRUSNH68ycC6eNvtwh07nX3QhOOlo/view?usp=sharing) | | magicdata | [OpenSLR](http://www.openslr.org/68/) | [Google Drive (Dev set)](https://drive.google.com/file/d/1g5bWRUSNH68ycC6eNvtwh07nX3QhOOlo/view?usp=sharing) |
| aishell3 | [OpenSLR](https://www.openslr.org/93/) | [Google Drive](https://drive.google.com/file/d/1shYp_o4Z0X0cZSKQDtFirct2luFUwKzZ/view?usp=sharing) | | aishell3 | [OpenSLR](https://www.openslr.org/93/) | [Google Drive](https://drive.google.com/file/d/1shYp_o4Z0X0cZSKQDtFirct2luFUwKzZ/view?usp=sharing) |
| data_aishell | [OpenSLR](https://www.openslr.org/33/) | | | data_aishell | [OpenSLR](https://www.openslr.org/33/) | |
> 解壓 aidatatang_200zh 後,還需將 `aidatatang_200zh\corpus\train`下的檔案全選解壓縮 > 解压 aidatatang_200zh 后,还需将 `aidatatang_200zh\corpus\train`下的文件全选解压缩
#### 2.`<datasets_root>`是什麼意思? #### 2.`<datasets_root>`是什麼意思?
假如數據集路徑為 `D:\data\aidatatang_200zh`,那麼 `<datasets_root>`就是 `D:\data` 假如数据集路径为 `D:\data\aidatatang_200zh`,那么 `<datasets_root>`就是 `D:\data`
#### 3.訓練模型顯存不足 #### 3.训练模型显存不足
訓練合成器時:將 `synthesizer/hparams.py`中的batch_size參數調 训练合成器时:将 `synthesizer/hparams.py`中的batch_size参数调
``` ```
//調整前 //整前
tts_schedule = [(2, 1e-3, 20_000, 12), # Progressive training schedule tts_schedule = [(2, 1e-3, 20_000, 12), # Progressive training schedule
(2, 5e-4, 40_000, 12), # (r, lr, step, batch_size) (2, 5e-4, 40_000, 12), # (r, lr, step, batch_size)
(2, 2e-4, 80_000, 12), # (2, 2e-4, 80_000, 12), #
(2, 1e-4, 160_000, 12), # r = reduction factor (# of mel frames (2, 1e-4, 160_000, 12), # r = reduction factor (# of mel frames
(2, 3e-5, 320_000, 12), # synthesized for each decoder iteration) (2, 3e-5, 320_000, 12), # synthesized for each decoder iteration)
(2, 1e-5, 640_000, 12)], # lr = learning rate (2, 1e-5, 640_000, 12)], # lr = learning rate
//調整後 //调整后
tts_schedule = [(2, 1e-3, 20_000, 8), # Progressive training schedule tts_schedule = [(2, 1e-3, 20_000, 8), # Progressive training schedule
(2, 5e-4, 40_000, 8), # (r, lr, step, batch_size) (2, 5e-4, 40_000, 8), # (r, lr, step, batch_size)
(2, 2e-4, 80_000, 8), # (2, 2e-4, 80_000, 8), #
@ -180,15 +180,15 @@ tts_schedule = [(2, 1e-3, 20_000, 8), # Progressive training schedule
(2, 1e-5, 640_000, 8)], # lr = learning rate (2, 1e-5, 640_000, 8)], # lr = learning rate
``` ```
聲碼器-預處理數據集時:將 `synthesizer/hparams.py`中的batch_size參數調 声码器-预处理数据集时:将 `synthesizer/hparams.py`中的batch_size参数调
``` ```
//調整前 //整前
### Data Preprocessing ### Data Preprocessing
max_mel_frames = 900, max_mel_frames = 900,
rescale = True, rescale = True,
rescaling_max = 0.9, rescaling_max = 0.9,
synthesis_batch_size = 16, # For vocoder preprocessing and inference. synthesis_batch_size = 16, # For vocoder preprocessing and inference.
//調整後 //调整后
### Data Preprocessing ### Data Preprocessing
max_mel_frames = 900, max_mel_frames = 900,
rescale = True, rescale = True,
@ -196,16 +196,16 @@ tts_schedule = [(2, 1e-3, 20_000, 8), # Progressive training schedule
synthesis_batch_size = 8, # For vocoder preprocessing and inference. synthesis_batch_size = 8, # For vocoder preprocessing and inference.
``` ```
聲碼器-訓練聲碼器時:將 `vocoder/wavernn/hparams.py`中的batch_size參數調 声码器-训练声码器时:将 `vocoder/wavernn/hparams.py`中的batch_size参数调
``` ```
//調整前 //整前
# Training # Training
voc_batch_size = 100 voc_batch_size = 100
voc_lr = 1e-4 voc_lr = 1e-4
voc_gen_at_checkpoint = 5 voc_gen_at_checkpoint = 5
voc_pad = 2 voc_pad = 2
//調整後 //调整后
# Training # Training
voc_batch_size = 6 voc_batch_size = 6
voc_lr = 1e-4 voc_lr = 1e-4
@ -214,13 +214,13 @@ voc_pad =2
``` ```
#### 4.碰到`RuntimeError: Error(s) in loading state_dict for Tacotron: size mismatch for encoder.embedding.weight: copying a param with shape torch.Size([70, 512]) from checkpoint, the shape in current model is torch.Size([75, 512]).` #### 4.碰到`RuntimeError: Error(s) in loading state_dict for Tacotron: size mismatch for encoder.embedding.weight: copying a param with shape torch.Size([70, 512]) from checkpoint, the shape in current model is torch.Size([75, 512]).`
請參照 issue [#37](https://github.com/babysor/MockingBird/issues/37) 请参照 issue [#37](https://github.com/babysor/MockingBird/issues/37)
#### 5.如何改善CPU、GPU用率? #### 5.如何改善CPU、GPU用率?
適情況調整batch_size參數來改善 视情况调整batch_size参数来改善
#### 6.發生 `頁面文件太小,無法完成操作` #### 6.发生 `页面文件太小,无法完成操作`
請參考這篇[文章](https://blog.csdn.net/qq_17755303/article/details/112564030)將虛擬內存更改為100G(102400),例如:档案放置D槽就更改D槽的虚拟内存 请参考这篇[文章](https://blog.csdn.net/qq_17755303/article/details/112564030)将虚拟内存更改为100G(102400),例如:文件放置D盘就更改D盘的虚拟内存
#### 7.什么时候算训练完成? #### 7.什么时候算训练完成?
首先一定要出现注意力模型其次是loss足够低取决于硬件设备和数据集。拿本人的供参考我的注意力是在 18k 步之后出现的,并且在 50k 步之后损失变得低于 0.4 首先一定要出现注意力模型其次是loss足够低取决于硬件设备和数据集。拿本人的供参考我的注意力是在 18k 步之后出现的,并且在 50k 步之后损失变得低于 0.4