mirror of
https://github.com/babysor/MockingBird.git
synced 2024-03-22 13:11:31 +08:00
Skip embedding
This commit is contained in:
parent
e9ce943f6c
commit
af1426a610
@ -99,7 +99,9 @@ def preprocess_dataset(datasets_root: Path, out_dir: Path, n_processes: int,
|
|||||||
print("Max mel frames length: %d" % max(int(m[4]) for m in metadata))
|
print("Max mel frames length: %d" % max(int(m[4]) for m in metadata))
|
||||||
print("Max audio timesteps length: %d" % max(int(m[3]) for m in metadata))
|
print("Max audio timesteps length: %d" % max(int(m[3]) for m in metadata))
|
||||||
|
|
||||||
def embed_utterance(fpaths, encoder_model_fpath):
|
def embed_utterance(fpaths: str, encoder_model_fpath: str, skip_existing: bool):
|
||||||
|
if skip_existing and fpaths.exists():
|
||||||
|
return
|
||||||
if not encoder.is_loaded():
|
if not encoder.is_loaded():
|
||||||
encoder.load_model(encoder_model_fpath)
|
encoder.load_model(encoder_model_fpath)
|
||||||
|
|
||||||
@ -118,7 +120,7 @@ def _emo_extract_from_utterance(fpaths, hparams, skip_existing=False):
|
|||||||
emo = extract_emo(np.expand_dims(wav, 0), hparams.sample_rate, True)
|
emo = extract_emo(np.expand_dims(wav, 0), hparams.sample_rate, True)
|
||||||
np.save(emo_fpath, emo.squeeze(0), allow_pickle=False)
|
np.save(emo_fpath, emo.squeeze(0), allow_pickle=False)
|
||||||
|
|
||||||
def create_embeddings(synthesizer_root: Path, encoder_model_fpath: Path, n_processes: int):
|
def create_embeddings(synthesizer_root: Path, encoder_model_fpath: Path, n_processes: int, skip_existing: bool):
|
||||||
wav_dir = synthesizer_root.joinpath("audio")
|
wav_dir = synthesizer_root.joinpath("audio")
|
||||||
metadata_fpath = synthesizer_root.joinpath("train.txt")
|
metadata_fpath = synthesizer_root.joinpath("train.txt")
|
||||||
assert wav_dir.exists() and metadata_fpath.exists()
|
assert wav_dir.exists() and metadata_fpath.exists()
|
||||||
@ -132,7 +134,7 @@ def create_embeddings(synthesizer_root: Path, encoder_model_fpath: Path, n_proce
|
|||||||
|
|
||||||
# TODO: improve on the multiprocessing, it's terrible. Disk I/O is the bottleneck here.
|
# TODO: improve on the multiprocessing, it's terrible. Disk I/O is the bottleneck here.
|
||||||
# Embed the utterances in separate threads
|
# Embed the utterances in separate threads
|
||||||
func = partial(embed_utterance, encoder_model_fpath=encoder_model_fpath)
|
func = partial(embed_utterance, encoder_model_fpath=encoder_model_fpath, skip_existing=skip_existing)
|
||||||
job = Pool(n_processes).imap(func, fpaths)
|
job = Pool(n_processes).imap(func, fpaths)
|
||||||
tuple(tqdm(job, "Embedding", len(fpaths), unit="utterances"))
|
tuple(tqdm(job, "Embedding", len(fpaths), unit="utterances"))
|
||||||
|
|
||||||
|
@ -45,7 +45,7 @@ def extract_emo(
|
|||||||
return y
|
return y
|
||||||
|
|
||||||
def _process_utterance(wav: np.ndarray, text: str, out_dir: Path, basename: str,
|
def _process_utterance(wav: np.ndarray, text: str, out_dir: Path, basename: str,
|
||||||
skip_existing: bool, hparams, encoder_model_fpath):
|
mel_fpath: str, wav_fpath: str, hparams, encoder_model_fpath):
|
||||||
## FOR REFERENCE:
|
## FOR REFERENCE:
|
||||||
# For you not to lose your head if you ever wish to change things here or implement your own
|
# For you not to lose your head if you ever wish to change things here or implement your own
|
||||||
# synthesizer.
|
# synthesizer.
|
||||||
@ -58,13 +58,6 @@ def _process_utterance(wav: np.ndarray, text: str, out_dir: Path, basename: str,
|
|||||||
# without extra padding. This means that you won't have an exact relation between the length
|
# without extra padding. This means that you won't have an exact relation between the length
|
||||||
# of the wav and of the mel spectrogram. See the vocoder data loader.
|
# of the wav and of the mel spectrogram. See the vocoder data loader.
|
||||||
|
|
||||||
# Skip existing utterances if needed
|
|
||||||
mel_fpath = out_dir.joinpath("mels", "mel-%s.npy" % basename)
|
|
||||||
wav_fpath = out_dir.joinpath("audio", "audio-%s.npy" % basename)
|
|
||||||
|
|
||||||
if skip_existing and mel_fpath.exists() and wav_fpath.exists():
|
|
||||||
return None
|
|
||||||
|
|
||||||
# Trim silence
|
# Trim silence
|
||||||
if hparams.trim_silence:
|
if hparams.trim_silence:
|
||||||
if not encoder.is_loaded():
|
if not encoder.is_loaded():
|
||||||
@ -112,7 +105,6 @@ def _split_on_silences(wav_fpath, words, hparams):
|
|||||||
def preprocess_general(speaker_dir, out_dir: Path, skip_existing: bool, hparams, dict_info, no_alignments: bool, encoder_model_fpath: Path):
|
def preprocess_general(speaker_dir, out_dir: Path, skip_existing: bool, hparams, dict_info, no_alignments: bool, encoder_model_fpath: Path):
|
||||||
metadata = []
|
metadata = []
|
||||||
extensions = ("*.wav", "*.flac", "*.mp3")
|
extensions = ("*.wav", "*.flac", "*.mp3")
|
||||||
if skip_existing:
|
|
||||||
for extension in extensions:
|
for extension in extensions:
|
||||||
wav_fpath_list = speaker_dir.glob(extension)
|
wav_fpath_list = speaker_dir.glob(extension)
|
||||||
# Iterate over each wav
|
# Iterate over each wav
|
||||||
@ -121,16 +113,14 @@ def preprocess_general(speaker_dir, out_dir: Path, skip_existing: bool, hparams,
|
|||||||
if not words:
|
if not words:
|
||||||
words = dict_info.get(wav_fpath.name) # try with extension
|
words = dict_info.get(wav_fpath.name) # try with extension
|
||||||
if not words:
|
if not words:
|
||||||
print("no wordS")
|
print(f"No word found in dict_info for {wav_fpath.name}, skip it")
|
||||||
continue
|
continue
|
||||||
sub_basename = "%s_%02d" % (wav_fpath.name, 0)
|
sub_basename = "%s_%02d" % (wav_fpath.name, 0)
|
||||||
|
|
||||||
mel_fpath = out_dir.joinpath("mels", f"mel-{sub_basename}.npy")
|
mel_fpath = out_dir.joinpath("mels", f"mel-{sub_basename}.npy")
|
||||||
wav_fpath_ = out_dir.joinpath("audio", f"audio-{sub_basename}.npy")
|
wav_fpath = out_dir.joinpath("audio", f"audio-{sub_basename}.npy")
|
||||||
|
|
||||||
if mel_fpath.exists() and wav_fpath_.exists():
|
if skip_existing and mel_fpath.exists() and wav_fpath.exists():
|
||||||
continue
|
continue
|
||||||
|
|
||||||
wav, text = _split_on_silences(wav_fpath, words, hparams)
|
wav, text = _split_on_silences(wav_fpath, words, hparams)
|
||||||
result = _process_utterance(wav, text, out_dir, sub_basename,
|
result = _process_utterance(wav, text, out_dir, sub_basename,
|
||||||
False, hparams, encoder_model_fpath) # accelarate
|
False, hparams, encoder_model_fpath) # accelarate
|
||||||
@ -138,24 +128,5 @@ def preprocess_general(speaker_dir, out_dir: Path, skip_existing: bool, hparams,
|
|||||||
continue
|
continue
|
||||||
wav_fpath_name, mel_fpath_name, embed_fpath_name, wav, mel_frames, text = result
|
wav_fpath_name, mel_fpath_name, embed_fpath_name, wav, mel_frames, text = result
|
||||||
metadata.append ((wav_fpath_name, mel_fpath_name, embed_fpath_name, len(wav), mel_frames, text))
|
metadata.append ((wav_fpath_name, mel_fpath_name, embed_fpath_name, len(wav), mel_frames, text))
|
||||||
else:
|
|
||||||
for extension in extensions:
|
|
||||||
wav_fpath_list = speaker_dir.glob(extension)
|
|
||||||
# Iterate over each wav
|
|
||||||
for wav_fpath in wav_fpath_list:
|
|
||||||
words = dict_info.get(wav_fpath.name.split(".")[0])
|
|
||||||
if not words:
|
|
||||||
words = dict_info.get(wav_fpath.name) # try with extension
|
|
||||||
if not words:
|
|
||||||
print("no wordS")
|
|
||||||
continue
|
|
||||||
sub_basename = "%s_%02d" % (wav_fpath.name, 0)
|
|
||||||
|
|
||||||
wav, text = _split_on_silences(wav_fpath, words, hparams)
|
|
||||||
result = _process_utterance(wav, text, out_dir, sub_basename,
|
|
||||||
False, hparams, encoder_model_fpath)
|
|
||||||
if result is None:
|
|
||||||
continue
|
|
||||||
wav_fpath_name, mel_fpath_name, embed_fpath_name, wav, mel_frames, text = result
|
|
||||||
metadata.append ((wav_fpath_name, mel_fpath_name, embed_fpath_name, len(wav), mel_frames, text))
|
|
||||||
return metadata
|
return metadata
|
||||||
|
Loading…
x
Reference in New Issue
Block a user