This commit is contained in:
Nemo 2021-08-25 23:11:34 +08:00
commit a6f8c8a39a
2 changed files with 21 additions and 11 deletions

View File

@ -6,6 +6,8 @@
### [English](README.md) | 中文
### [DEMO VIDEO](https://www.bilibili.com/video/BV1sA411P7wM/)
## 特性
🌍 **中文** 支持普通话并使用多种中文数据集进行测试adatatang_200zh, magicdata
@ -22,6 +24,7 @@
**Python 3.7 或更高版本** 需要运行工具箱。
* 安装 [PyTorch](https://pytorch.org/get-started/locally/)。
> 如果在用 pip 方式安装的时候出现 `ERROR: Could not find a version that satisfies the requirement torch==1.9.0+cu102 (from versions: 0.1.2, 0.1.2.post1, 0.1.2.post2)` 这个错误可能是 python 版本过低3.9 可以安装成功
* 安装 [ffmpeg](https://ffmpeg.org/download.html#get-packages)。
* 运行`pip install -r requirements.txt` 来安装剩余的必要包。
* 安装 webrtcvad 用 `pip install webrtcvad-wheels`
@ -33,6 +36,8 @@
可以传入参数 --dataset `{dataset}` 支持 adatatang_200zh, magicdata
> 假如你下载的 `aidatatang_200zh`文件放在D盘`train`文件路径为 `D:\data\aidatatang_200zh\corpus\train` , 你的`datasets_root`就是 `D:\data\`
>假如發生 `頁面文件太小,無法完成操作`,請參考這篇[文章](https://blog.csdn.net/qq_17755303/article/details/112564030)將虛擬內存更改為100G(102400),例如:档案放置D槽就更改D槽的虚拟内存
* 预处理嵌入:
`python synthesizer_preprocess_embeds.py <datasets_root>/SV2TTS/synthesizer`
@ -49,7 +54,7 @@
| 作者 | 下载链接 | 效果预览 |
| --- | ----------- | ----- |
|@miven| https://pan.baidu.com/s/1PI-hM3sn5wbeChRryX-RCQ 提取码2021 | https://www.bilibili.com/video/BV1uh411B7AD/
|@miven| https://pan.baidu.com/s/1PI-hM3sn5wbeChRryX-RCQ 提取码2021 | https://www.bilibili.com/video/BV1uh411B7AD/(暂时不可访问)
### 3. 启动工具箱
然后您可以尝试使用工具箱:

View File

@ -24,14 +24,19 @@
**Python 3.7 or higher ** is needed to run the toolbox.
* Install [PyTorch](https://pytorch.org/get-started/locally/).
> If you get an `ERROR: Could not find a version that satisfies the requirement torch==1.9.0+cu102 (from versions: 0.1.2, 0.1.2.post1, 0.1.2.post2 )` This error is probably due to a low version of python, try using 3.9 and it will install successfully
* Install [ffmpeg](https://ffmpeg.org/download.html#get-packages).
* Run `pip install -r requirements.txt` to install the remaining necessary packages.
* Install webrtcvad `pip install webrtcvad-wheels`(If you need)
> Note that we are using the pretrained encoder/vocoder but synthesizer, since the original model is incompatible with the Chinese sympols. It means the demo_cli is not working at this moment.
### 2. Train synthesizer with your dataset
* Download aidatatang_200zh or SLR68 dataset and unzip: make sure you can access all .wav in *train* folder
* Preprocess with the audios and the mel spectrograms:
`python synthesizer_preprocess_audio.py <datasets_root>`
Allow parameter `--dataset {dataset}` to support adatatang_200zh, magicdata
>If it happens `the page file is too small to complete the operation`, please refer to this [video](https://www.youtube.com/watch?v=Oh6dga-Oy10&ab_channel=CodeProf) and change the virtual memory to 100G (102400), for example : When the file is placed in the D disk, the virtual memory of the D disk is changed.
* Preprocess the embeddings:
`python synthesizer_preprocess_embeds.py <datasets_root>/SV2TTS/synthesizer`